Suppr超能文献

大鼠舌肌收缩性、疲劳性和纤维类型特性。

Tongue muscle contractile, fatigue, and fiber type properties in rats.

机构信息

Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.

出版信息

J Appl Physiol (1985). 2021 Sep 1;131(3):1043-1055. doi: 10.1152/japplphysiol.00329.2021. Epub 2021 Jul 29.

Abstract

The intrinsic and extrinsic tongue muscles manipulate the position and shape of the tongue and are activated during many oral and respiratory behaviors. In the present study, in 6-mo-old Fischer 344 rats, we examined mechanical and fatigue properties of tongue muscles in relation to their fiber type composition. In an ex vivo preparation, isometric force and fatigue was assessed by direct muscle stimulation. Tongue muscles were frozen in melting isopentane and transverse sections cut at 10 µm. In hematoxylin-eosin (H&E)-stained muscle sections, the relative fractions of muscle versus extracellular matrix were determined. Muscle fibers were classified as type I, IIa and IIx, and/or IIb based on immunoreactivity to specific myosin heavy chain isoform antibodies. Cross-sectional areas (CSAs) and proportions of different fiber types were used to calculate their relative contribution to total muscle CSAs. We found that the superior and inferior longitudinal intrinsic muscles (4.4 N/cm) and genioglossus muscle (3.0 N/cm) generated the greatest maximum isometric force compared with the transversalis muscle (0.9 N/cm). The longitudinal muscles and the transversalis muscle displayed greater fatigue during repetitive stimulation consistent with the greater relative contribution of type IIx and/or IIb fibers. By contrast, the genioglossus, comprising a higher proportion of type I and IIa fibers, was more fatigue resistant. This study advances our understanding of the force, fatigue, and fiber type-specific properties of individual tongue musculature. The assessments and approach provide a readily accessible muscular readout for scenarios where motor control dysfunction or tongue weakness is evident. For the individual tongue muscles, relatively little quantification of uniaxial force, fatigue, and fiber type-specific properties has been documented. Here, we assessed uniaxial-specific force generation, fatigability, and muscle fiber type-specific properties in the superior and inferior longitudinal muscles, the transversalis, and the genioglossus in Fischer 344 rats. The longitudinal muscles produced the greatest isometric tetanic-specific forces. The genioglossus was more fatigue resistant and comprised higher proportions of I and IIa fibers.

摘要

内在和外在舌肌可调节舌头的位置和形状,并在许多口腔和呼吸行为中被激活。在本研究中,我们在 6 月龄 Fischer 344 大鼠中,研究了与纤维类型组成相关的舌肌的力学和疲劳特性。在离体准备中,通过直接肌肉刺激评估等长力和疲劳。将舌肌在融化的异戊烷中冷冻,并在 10μm 处横切切片。在苏木精-伊红(H&E)染色的肌肉切片中,确定肌肉与细胞外基质的相对分数。肌肉纤维根据对特定肌球蛋白重链同工型抗体的免疫反应性被分类为 I 型、IIa 型和/或 IIx 型和/或 IIb 型。横截面积(CSA)和不同纤维类型的比例用于计算它们对总肌肉 CSA 的相对贡献。我们发现,与横肌(0.9 N/cm)相比,上、下纵肌(4.4 N/cm)和颏舌肌(3.0 N/cm)产生的最大等长力最大。在重复刺激期间,纵肌和横肌显示出更大的疲劳,这与 IIx 和/或 IIb 纤维的相对较大贡献一致。相比之下,包含更高比例的 I 型和 IIa 纤维的颏舌肌更能抵抗疲劳。这项研究增进了我们对单个舌肌的力、疲劳和纤维类型特异性特性的理解。这些评估和方法为明显存在运动控制障碍或舌肌无力的情况提供了易于获得的肌肉输出。对于单个舌肌,很少有关于单轴力、疲劳和纤维类型特异性特性的定量研究。在这里,我们评估了 Fischer 344 大鼠的上、下纵肌、横肌和颏舌肌的单轴特定力生成、疲劳性和肌肉纤维类型特异性特性。纵肌产生最大的等长强直特定力。颏舌肌更能抵抗疲劳,包含更高比例的 I 型和 IIa 纤维。

相似文献

1
Tongue muscle contractile, fatigue, and fiber type properties in rats.大鼠舌肌收缩性、疲劳性和纤维类型特性。
J Appl Physiol (1985). 2021 Sep 1;131(3):1043-1055. doi: 10.1152/japplphysiol.00329.2021. Epub 2021 Jul 29.
2
Sarcopenia of the longitudinal tongue muscles in rats.大鼠舌纵向肌肉的废用性萎缩。
Respir Physiol Neurobiol. 2024 Jan;319:104180. doi: 10.1016/j.resp.2023.104180. Epub 2023 Oct 18.
3
Effects of inhaled fluticasone propionate on extrinsic tongue muscles in rats.吸入丙酸氟替卡松对大鼠舌外肌的影响。
J Appl Physiol (1985). 2020 Mar 1;128(3):576-585. doi: 10.1152/japplphysiol.00359.2019. Epub 2020 Jan 16.
6
Differential impact of tongue exercise on intrinsic lingual muscles.舌部运动对舌固有肌的不同影响。
Laryngoscope. 2018 Oct;128(10):2245-2251. doi: 10.1002/lary.27044. Epub 2017 Dec 15.
10
Central activation deficits contribute to post stroke lingual weakness in a rat model.中枢激活缺陷导致大鼠模型中风后舌肌无力。
J Appl Physiol (1985). 2021 Apr 1;130(4):964-975. doi: 10.1152/japplphysiol.00533.2020. Epub 2021 Feb 18.

引用本文的文献

3
Postnatal survival of phrenic motor neurons is promoted by BDNF/TrkB.FL signaling.BDNF/TrkB.FL 信号促进膈神经运动神经元的出生后存活。
J Appl Physiol (1985). 2024 May 1;136(5):1113-1121. doi: 10.1152/japplphysiol.00911.2023. Epub 2024 Mar 21.
4
Sarcopenia of the longitudinal tongue muscles in rats.大鼠舌纵向肌肉的废用性萎缩。
Respir Physiol Neurobiol. 2024 Jan;319:104180. doi: 10.1016/j.resp.2023.104180. Epub 2023 Oct 18.
8
Bioenergetic Evaluation of Muscle Fatigue in Murine Tongue.肌肉疲劳的生物能量学评价:以小鼠舌肌为例。
Dysphagia. 2023 Aug;38(4):1039-1048. doi: 10.1007/s00455-022-10537-y. Epub 2022 Nov 19.
9
Obstructive Sleep Apnea and Role of the Diaphragm.阻塞性睡眠呼吸暂停与膈肌的作用
Cureus. 2022 Sep 10;14(9):e29004. doi: 10.7759/cureus.29004. eCollection 2022 Sep.
10
Diaphragm muscle function in a mouse model of early-onset spasticity.早期痉挛性瘫痪小鼠模型中的膈肌功能。
J Appl Physiol (1985). 2022 Jul 1;133(1):60-68. doi: 10.1152/japplphysiol.00157.2022. Epub 2022 May 19.

本文引用的文献

2
Central activation deficits contribute to post stroke lingual weakness in a rat model.中枢激活缺陷导致大鼠模型中风后舌肌无力。
J Appl Physiol (1985). 2021 Apr 1;130(4):964-975. doi: 10.1152/japplphysiol.00533.2020. Epub 2021 Feb 18.
4
Impact of congenital diaphragmatic hernia on diaphragm muscle function in neonatal rats.先天性膈疝对新生大鼠膈肌功能的影响。
J Appl Physiol (1985). 2021 Mar 1;130(3):801-812. doi: 10.1152/japplphysiol.00852.2020. Epub 2021 Jan 28.
7
Five Specific Tongue Movements in a Healthy Population.健康人群的五种特定舌部运动。
Dysphagia. 2021 Aug;36(4):736-742. doi: 10.1007/s00455-020-10195-y. Epub 2020 Oct 11.
8
Innervation of human soft palate muscles.人软腭肌肉的神经支配。
Anat Rec (Hoboken). 2021 May;304(5):1054-1070. doi: 10.1002/ar.24531. Epub 2020 Nov 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验