Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.
J Appl Physiol (1985). 2021 Sep 1;131(3):1043-1055. doi: 10.1152/japplphysiol.00329.2021. Epub 2021 Jul 29.
The intrinsic and extrinsic tongue muscles manipulate the position and shape of the tongue and are activated during many oral and respiratory behaviors. In the present study, in 6-mo-old Fischer 344 rats, we examined mechanical and fatigue properties of tongue muscles in relation to their fiber type composition. In an ex vivo preparation, isometric force and fatigue was assessed by direct muscle stimulation. Tongue muscles were frozen in melting isopentane and transverse sections cut at 10 µm. In hematoxylin-eosin (H&E)-stained muscle sections, the relative fractions of muscle versus extracellular matrix were determined. Muscle fibers were classified as type I, IIa and IIx, and/or IIb based on immunoreactivity to specific myosin heavy chain isoform antibodies. Cross-sectional areas (CSAs) and proportions of different fiber types were used to calculate their relative contribution to total muscle CSAs. We found that the superior and inferior longitudinal intrinsic muscles (4.4 N/cm) and genioglossus muscle (3.0 N/cm) generated the greatest maximum isometric force compared with the transversalis muscle (0.9 N/cm). The longitudinal muscles and the transversalis muscle displayed greater fatigue during repetitive stimulation consistent with the greater relative contribution of type IIx and/or IIb fibers. By contrast, the genioglossus, comprising a higher proportion of type I and IIa fibers, was more fatigue resistant. This study advances our understanding of the force, fatigue, and fiber type-specific properties of individual tongue musculature. The assessments and approach provide a readily accessible muscular readout for scenarios where motor control dysfunction or tongue weakness is evident. For the individual tongue muscles, relatively little quantification of uniaxial force, fatigue, and fiber type-specific properties has been documented. Here, we assessed uniaxial-specific force generation, fatigability, and muscle fiber type-specific properties in the superior and inferior longitudinal muscles, the transversalis, and the genioglossus in Fischer 344 rats. The longitudinal muscles produced the greatest isometric tetanic-specific forces. The genioglossus was more fatigue resistant and comprised higher proportions of I and IIa fibers.
内在和外在舌肌可调节舌头的位置和形状,并在许多口腔和呼吸行为中被激活。在本研究中,我们在 6 月龄 Fischer 344 大鼠中,研究了与纤维类型组成相关的舌肌的力学和疲劳特性。在离体准备中,通过直接肌肉刺激评估等长力和疲劳。将舌肌在融化的异戊烷中冷冻,并在 10μm 处横切切片。在苏木精-伊红(H&E)染色的肌肉切片中,确定肌肉与细胞外基质的相对分数。肌肉纤维根据对特定肌球蛋白重链同工型抗体的免疫反应性被分类为 I 型、IIa 型和/或 IIx 型和/或 IIb 型。横截面积(CSA)和不同纤维类型的比例用于计算它们对总肌肉 CSA 的相对贡献。我们发现,与横肌(0.9 N/cm)相比,上、下纵肌(4.4 N/cm)和颏舌肌(3.0 N/cm)产生的最大等长力最大。在重复刺激期间,纵肌和横肌显示出更大的疲劳,这与 IIx 和/或 IIb 纤维的相对较大贡献一致。相比之下,包含更高比例的 I 型和 IIa 纤维的颏舌肌更能抵抗疲劳。这项研究增进了我们对单个舌肌的力、疲劳和纤维类型特异性特性的理解。这些评估和方法为明显存在运动控制障碍或舌肌无力的情况提供了易于获得的肌肉输出。对于单个舌肌,很少有关于单轴力、疲劳和纤维类型特异性特性的定量研究。在这里,我们评估了 Fischer 344 大鼠的上、下纵肌、横肌和颏舌肌的单轴特定力生成、疲劳性和肌肉纤维类型特异性特性。纵肌产生最大的等长强直特定力。颏舌肌更能抵抗疲劳,包含更高比例的 I 型和 IIa 纤维。