Photocatalysis International Research Center (PIRC), Tokyo University of Science, Yamazaki, Noda 278-8510, Chiba, Japan; Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
Department of Automotive Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
J Hazard Mater. 2021 Oct 5;419:126453. doi: 10.1016/j.jhazmat.2021.126453. Epub 2021 Jun 27.
Catalytic reduction of nitroaromatic compounds present in wastewater by nanostructured materials is a promising process for wastewater treatment. A multifunctional electrode based on ternary spinal nickel cobalt oxide is used in the catalytic reduction of a nitroaromatic compound and supercapacitor application. In this study, we designed nanoflakes- like nickel cobaltite (NiCoO) using a simple, chemical, cost-effective hydrothermal method. Nanoflakes- like NiCoO samples are tested as catalysts toward rapid reduction of 4-nitrophenol and as electrode materials for supercapacitors. The conversion of 4-nitrophenol into 4-aminophenol is achieved using a reducing agents like sodium borohydride and NiCoO catalyst. Effect of catalyst loading, 4-nitrophenol and sodium borohydride concentrations on the catalytic performance of 4-nitrophenol is studied. As sodium borohydride concentration increases the catalytic efficiency of 4-nitrophenol increased due to more BH ions available which provides more electrons for catalytic reduction of 4-nitrophenol. Catalytic reduction of 4-nitrophenol using sodium borohydride as a reducing agent was based on the Langmuir-Hinshelwood mechanism. This mechanism follows the apparent pseudo first order reaction kinetics. Additionally, NiCoO electrode is used for energy storage application. The nanoflakes-like NiCoO electrode deposited at 120 °C shows a higher specific capacitance than samples synthesized at 100 and 140 °C. The maximum specific capacitance observed for NiCoO electrode is 1505 Fg at a scan rate of 5 mV s with high stability of 95% for 5000 CV cycles.
纳米结构材料催化还原废水中的硝基芳香族化合物是一种很有前途的废水处理方法。基于三元脊柱镍钴氧化物的多功能电极用于催化还原硝基芳香族化合物和超级电容器应用。在这项研究中,我们使用一种简单、化学、经济高效的水热方法设计了类纳米片状的镍钴氧化物(NiCoO)。类纳米片状 NiCoO 样品被测试为快速还原 4-硝基苯酚的催化剂和超级电容器的电极材料。使用还原剂如硼氢化钠和 NiCoO 催化剂将 4-硝基苯酚转化为 4-氨基酚。研究了催化剂负载量、4-硝基苯酚和硼氢化钠浓度对 4-硝基苯酚催化性能的影响。随着硼氢化钠浓度的增加,由于更多的 BH 离子可用,提供了更多的电子用于 4-硝基苯酚的催化还原,4-硝基苯酚的催化效率增加。使用硼氢化钠作为还原剂的 4-硝基苯酚的催化还原基于 Langmuir-Hinshelwood 机理。该机理遵循表观准一级反应动力学。此外,NiCoO 电极还用于储能应用。在 120°C 下沉积的类纳米片状 NiCoO 电极显示出比在 100°C 和 140°C 下合成的样品更高的比电容。在 5 mV s 的扫描速率下,NiCoO 电极的最大比电容为 1505 Fg,具有 95%的高稳定性,经过 5000 次 CV 循环。