Yadav A A, Hunge Yuvaraj M, Majumder Sutripto, Mourad Abdel-Hamid I, Islam Muhammad M, Sakurai Takeaki, Kang Seok-Won
Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan; Department of Automotive Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
Space Colony Research Center, Tokyo University of Science, Yamazaki, Noda 278-8510, Chiba, Japan.
J Colloid Interface Sci. 2025 Jan;677(Pt B):161-170. doi: 10.1016/j.jcis.2024.08.060. Epub 2024 Aug 10.
Two-dimensional nanosheets, with their distinct characteristics, are widely used in various applications such as water splitting, supercapacitors, catalysis etc. In this research, we produced Cu-BDC MOF nanosheets by using CuO nanotubes for metal ions and HBDC as the organic linker. We combined these Cu-BDC MOF nanosheets with reduced graphene oxide (rGO) to form a nanocomposite. The collaboration between Cu-BDC MOF and rGO boosts both the catalytic reduction of 4-nitrophenol and the electrochemical capabilities. The conversion of 4-nitrophenol to 4-aminophenol is achieved using sodium borohydride as both a reducing agent and a catalyst. The study explores the impact of different concentrations of 4-nitrophenol and sodium borohydride on catalytic efficiency. The increase in sodium borohydride concentration enhances catalytic efficiency by providing more BH ions and electrons for the reduction process. The catalytic reduction process adheres to the Langmuir-Hinshelwood mechanism with apparent pseudo-first-order kinetics. Specifically, Cu-BDC MOF and rGO/Cu-BDC MOF exhibit specific capacities of 468.4 mA h/g and 656.4 mA h/g at a current density of 2 A/g, respectively, while also enhancing the operating voltage window. Therefore, electrodes based on rGO/Cu-BDC MOF nanosheets present a novel approach for environmental remediation and energy storage applications across various fields.
二维纳米片具有独特的特性,被广泛应用于各种领域,如水分解、超级电容器、催化等。在本研究中,我们以氧化铜纳米管作为金属离子源,以HBDC作为有机连接体,制备了Cu-BDC金属有机框架纳米片。我们将这些Cu-BDC金属有机框架纳米片与还原氧化石墨烯(rGO)相结合,形成了一种纳米复合材料。Cu-BDC金属有机框架与rGO之间的协同作用提高了对4-硝基苯酚的催化还原能力以及电化学性能。使用硼氢化钠作为还原剂和催化剂,实现了将4-硝基苯酚转化为4-氨基苯酚。该研究探讨了不同浓度的4-硝基苯酚和硼氢化钠对催化效率的影响。硼氢化钠浓度的增加通过为还原过程提供更多的BH离子和电子来提高催化效率。催化还原过程遵循朗缪尔-欣谢尔伍德机制,具有明显的准一级动力学。具体而言,在电流密度为2 A/g时,Cu-BDC金属有机框架和rGO/Cu-BDC金属有机框架的比容量分别为468.4 mA h/g和656.4 mA h/g,同时还拓宽了工作电压窗口。因此,基于rGO/Cu-BDC金属有机框架纳米片的电极在各个领域的环境修复和能量存储应用中提供了一种新方法。