Singh Ajay Pratap, Thirumal Meganathan
Department of Chemistry, University of Delhi, Delhi 110007, India.
ACS Omega. 2021 Dec 9;6(50):34771-34782. doi: 10.1021/acsomega.1c05266. eCollection 2021 Dec 21.
Contamination through industrial effluents is a major threat to the environment. Degradation of organic pollutants remains a major challenge, and semiconductor-based catalysis is reported to be a viable solution. Recently, AgNi bimetallic alloy nanoparticles attracted great attention with superior properties. We report the synthesis of AgNi nano-alloy particles immobilized over the surface of ZnO hexagonal rods through an in situ chemical co-reduction process to develop a novel AgNi@ZnO nanocomposite for catalytic applications. The crystal structure, phase purity, morphology, particle size, and other properties of the as-synthesized AgNi@ZnO nanocomposite were scrutinized using powder X-ray diffraction, scanning electron microscopy, Raman spectroscopy, energy-dispersive X-ray analysis, multipoint Brunauer-Emmett-Teller, and transmission electron microscopy. The composite exhibits excellent catalytic activity toward the reduction of nitroarenes and environment polluting organic dyes. The synthesized nanocomposite shows enhanced catalytic activity with an incredible reaction rate constant, noticeable low degradation time, and greater stability. The catalyst is easily recyclable and exhibits consecutive catalytic cycle usage.
工业废水造成的污染是对环境的重大威胁。有机污染物的降解仍然是一项重大挑战,据报道基于半导体的催化是一种可行的解决方案。最近,AgNi双金属合金纳米颗粒因其优异的性能而备受关注。我们报道了通过原位化学共还原过程合成固定在ZnO六角棒表面的AgNi纳米合金颗粒,以开发一种用于催化应用的新型AgNi@ZnO纳米复合材料。使用粉末X射线衍射、扫描电子显微镜、拉曼光谱、能量色散X射线分析、多点布鲁诺尔-埃米特-泰勒法和透射电子显微镜对合成的AgNi@ZnO纳米复合材料的晶体结构、相纯度、形态、粒径和其他性能进行了仔细研究。该复合材料对硝基芳烃和环境污染有机染料的还原表现出优异的催化活性。合成的纳米复合材料表现出增强的催化活性,具有惊人的反应速率常数、显著较短的降解时间和更高的稳定性。该催化剂易于回收,并表现出连续的催化循环使用性能。