Luo Shunqin, Lin Huiwen, Wang Qi, Ren Xiaohui, Hernández-Pinilla David, Nagao Tadaaki, Xie Yao, Yang Gaoliang, Li Sijie, Song Hui, Oshikiri Mitsutake, Ye Jinhua
Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0814, Japan.
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
J Am Chem Soc. 2021 Aug 11;143(31):12145-12153. doi: 10.1021/jacs.1c04315. Epub 2021 Jul 29.
Methanol steam reforming (MSR) is a promising reaction that enables efficient production and safe transportation of hydrogen, but it requires a relatively high temperature to achieve high activity, leading to large energy consumption. Here, we report a plasmonic ZnCu alloy catalyst, consisting of plasmonic Cu nanoparticles with surface-deposited Zn atoms, for efficient solar-driven MSR without additional thermal energy input. Experimental results and theoretical calculations suggest that Zn atoms act not only as the catalytic sites for water reduction with lower activation energy but also as the charge transfer channel, pumping hot electrons into water molecules and subsequently resulting in the formation of electron-deficient Cu for methanol activation. These merits together with photothermal heating render the optimal ZnCu catalyst a high H production rate of 328 mmol g h with a solar energy conversion efficiency of 1.2% under 7.9 Suns irradiation, far exceeding the reported conventional photocatalytic and thermocatalytic MSR. This work provides a potential strategy for efficient solar-driven H production and various other energy-demanding industrial reactions through designing alloy catalysts.
甲醇蒸汽重整(MSR)是一种很有前景的反应,能够实现氢气的高效生产和安全运输,但它需要相对较高的温度才能达到高活性,从而导致大量的能源消耗。在此,我们报道了一种等离子体ZnCu合金催化剂,它由表面沉积有Zn原子的等离子体Cu纳米颗粒组成,可在无额外热能输入的情况下实现高效太阳能驱动的MSR。实验结果和理论计算表明,Zn原子不仅作为具有较低活化能的水还原催化位点,还作为电荷转移通道,将热电子泵入水分子中,随后导致形成缺电子的Cu用于甲醇活化。这些优点与光热加热相结合,使得最佳的ZnCu催化剂在7.9个太阳光照下具有328 mmol g⁻¹ h⁻¹的高氢气产率和1.2%的太阳能转换效率,远远超过了报道的传统光催化和热催化MSR。这项工作通过设计合金催化剂为高效太阳能驱动制氢及各种其他能源需求大的工业反应提供了一种潜在策略。