Suppr超能文献

基于属性的药物设计的深度学习趋势。

Trends in Deep Learning for Property-driven Drug Design.

机构信息

IBM Research Europe, Zurich, Switzerland.

出版信息

Curr Med Chem. 2021;28(38):7862-7886. doi: 10.2174/0929867328666210729115728.

Abstract

It is more pressing than ever to reduce the time and costs for the development of lead compounds in the pharmaceutical industry. The co-occurrence of advances in high-throughput screening and the rise of deep learning (DL) have enabled the development of large-scale multimodal predictive models for virtual drug screening. Recently, deep generative models have emerged as a powerful tool to explore the chemical space and raise hopes to expedite the drug discovery process. Following this progress in chemocentric approaches for generative chemistry, the next challenge is to build multimodal conditional generative models that leverage disparate knowledge sources when mapping biochemical properties to target structures. Here, we call the community to bridge drug discovery more closely with systems biology when designing deep generative models. Complementing the plethora of reviews on the role of DL in chemoinformatics, we specifically focus on the interface of predictive and generative modelling for drug discovery. Through a systematic publication keyword search on PubMed and a selection of preprint servers (arXiv, biorXiv, chemRxiv, and medRxiv), we quantify trends in the field and find that molecular graphs and VAEs have become the most widely adopted molecular representations and architectures in generative models, respectively. We discuss progress on DL for toxicity, drug-target affinity, and drug sensitivity prediction and specifically focus on conditional molecular generative models that encompass multimodal prediction models. Moreover, we outline future prospects in the field and identify challenges such as the integration of deep learning systems into experimental workflows in a closed-loop manner or the adoption of federated machine learning techniques to overcome data sharing barriers. Other challenges include, but are not limited to interpretability in generative models, more sophisticated metrics for the evaluation of molecular generative models, and, following up on that, community-accepted benchmarks for both multimodal drug property prediction and property-driven molecular design.

摘要

在制药行业,减少先导化合物开发的时间和成本比以往任何时候都更加紧迫。高通量筛选技术的进步和深度学习(DL)的兴起,使大规模多模态预测模型在虚拟药物筛选方面得到了发展。最近,深度生成模型作为探索化学空间的有力工具而出现,为加速药物发现过程带来了希望。在以化学为中心的生成化学方法取得这一进展之后,下一个挑战是构建多模态条件生成模型,以便在将生化特性映射到靶标结构时利用不同的知识源。在这里,我们呼吁在设计深度生成模型时,将药物发现与系统生物学更紧密地结合起来。在众多关于 DL 在化学生信学中作用的综述中,我们特别关注预测和生成建模在药物发现中的接口。通过在 PubMed 上进行系统的出版物关键字搜索和选择预印本服务器(arXiv、biorXiv、chemRxiv 和 medRxiv),我们量化了该领域的趋势,并发现分子图和 VAEs 分别成为生成模型中应用最广泛的分子表示和架构。我们讨论了 DL 在毒性、药物-靶标亲和力和药物敏感性预测方面的进展,并特别关注包含多模态预测模型的条件分子生成模型。此外,我们概述了该领域的未来前景,并确定了一些挑战,如以闭环方式将深度学习系统集成到实验工作流程中,或采用联邦机器学习技术来克服数据共享障碍。其他挑战包括但不限于生成模型的可解释性、用于评估分子生成模型的更复杂指标,以及紧随其后的多模态药物性质预测和性质驱动的分子设计的社区认可基准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验