Suppr超能文献

生成化学:用深度学习生成模型进行药物发现。

Generative chemistry: drug discovery with deep learning generative models.

机构信息

Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.

NIH National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA.

出版信息

J Mol Model. 2021 Feb 4;27(3):71. doi: 10.1007/s00894-021-04674-8.

Abstract

The de novo design of molecular structures using deep learning generative models introduces an encouraging solution to drug discovery in the face of the continuously increased cost of new drug development. From the generation of original texts, images, and videos, to the scratching of novel molecular structures the creativity of deep learning generative models exhibits the height machine intelligence can achieve. The purpose of this paper is to review the latest advances in generative chemistry which relies on generative modeling to expedite the drug discovery process. This review starts with a brief history of artificial intelligence in drug discovery to outline this emerging paradigm. Commonly used chemical databases, molecular representations, and tools in cheminformatics and machine learning are covered as the infrastructure for generative chemistry. The detailed discussions on utilizing cutting-edge generative architectures, including recurrent neural network, variational autoencoder, adversarial autoencoder, and generative adversarial network for compound generation are focused. Challenges and future perspectives follow.

摘要

使用深度学习生成模型对分子结构进行从头设计,为药物发现带来了令人鼓舞的解决方案,有助于应对新药研发成本的不断增加。从原始文本、图像和视频的生成,到新颖分子结构的生成,深度学习生成模型的创造力展示了机器智能所能达到的高度。本文旨在综述基于生成模型来加速药物发现过程的生成化学的最新进展。本文从人工智能在药物发现领域的简要历史开始,概述了这一新兴范例。涵盖了化学信息学和机器学习中常用的化学数据库、分子表示和工具,作为生成化学的基础。详细讨论了如何利用先进的生成架构,包括递归神经网络、变分自动编码器、对抗自动编码器和生成对抗网络进行化合物生成。随后探讨了挑战和未来展望。

相似文献

6
The power of deep learning to ligand-based novel drug discovery.深度学习在基于配体的新药发现中的作用。
Expert Opin Drug Discov. 2020 Jul;15(7):755-764. doi: 10.1080/17460441.2020.1745183. Epub 2020 Mar 31.
10
Generative Deep Learning for Targeted Compound Design.生成式深度学习在靶向化合物设计中的应用。
J Chem Inf Model. 2021 Nov 22;61(11):5343-5361. doi: 10.1021/acs.jcim.0c01496. Epub 2021 Oct 26.

引用本文的文献

5
Capsule neural network and its applications in drug discovery.胶囊神经网络及其在药物发现中的应用。
iScience. 2025 Mar 14;28(4):112217. doi: 10.1016/j.isci.2025.112217. eCollection 2025 Apr 18.
9
Navigating the complexity of p53-DNA binding: implications for cancer therapy.解析p53与DNA结合的复杂性:对癌症治疗的启示
Biophys Rev. 2024 Jul 11;16(4):479-496. doi: 10.1007/s12551-024-01207-4. eCollection 2024 Aug.

本文引用的文献

4
High-Throughput Screening: today's biochemical and cell-based approaches.高通量筛选:今天的生化和基于细胞的方法。
Drug Discov Today. 2020 Oct;25(10):1807-1821. doi: 10.1016/j.drudis.2020.07.024. Epub 2020 Aug 12.
7
Advances in G protein-coupled receptor high-throughput screening.G 蛋白偶联受体高通量筛选技术的进展。
Curr Opin Biotechnol. 2020 Aug;64:210-217. doi: 10.1016/j.copbio.2020.06.004. Epub 2020 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验