Rossello Xavier, González-Del-Hoyo Maribel
Servei de Cardiologia, Institut d'Investigació Sanitària Illes Balears (IdISBa), Hospital Universitari Son Espases, Palma de Mallorca, Balearic Islands, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Facultad de Medicina, Universitat de les Illes Balears (UIB), Palma de Mallorca, Balearic Islands, Spain; Medical Statistics Department, London School of Hygiene & Tropical Medicine, London, United Kingdom.
Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.
Rev Esp Cardiol (Engl Ed). 2022 Jan;75(1):77-85. doi: 10.1016/j.rec.2021.07.001. Epub 2021 Jul 27.
This article is the second of a series of 2 educational articles. In the first article, we described the basic concepts of survival analysis, summarizing the common statistical methods and providing a set of recommendations to guide the strategy of survival analyses in randomized clinical trials and observational studies. Here, we introduce stratified Cox models and frailty models, as well as the immortal time bias arising from a poor assessment of time-dependent variables. To address the issue of multiplicity of outcomes, we provide several modelling strategies to deal with other types of time-to-event data analyses, such as competing risks, multistate models, and recurrent-event methods. This review is illustrated with examples from previous cardiovascular research publications, and each statistical method is discussed alongside its main strengths and limitations. Finally, we provide some general observations about alternative statistical methods with less restrictive assumptions, such as the win ratio method, the restrictive mean survival time, and accelerated failure time model.
本文是两篇教育性文章系列中的第二篇。在第一篇文章中,我们描述了生存分析的基本概念,总结了常见的统计方法,并提供了一系列建议,以指导随机临床试验和观察性研究中的生存分析策略。在此,我们介绍分层Cox模型和脆弱模型,以及因对时间依赖性变量评估不当而产生的不朽时间偏倚。为解决结局多样性问题,我们提供了几种建模策略,以处理其他类型的事件发生时间数据分析,如竞争风险、多状态模型和复发事件方法。本综述通过先前心血管研究出版物中的实例进行说明,并对每种统计方法的主要优点和局限性进行了讨论。最后,我们对一些假设限制较少的替代统计方法给出了一些一般性观察,如胜率法、限制性平均生存时间和加速失效时间模型。