Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia.
Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia; Grupo Polifenoles, Facultad de Tecnologías, Escuela de Química, Universidad Tecnológica de Pereira, Pereira, Colombia.
Biomed Pharmacother. 2021 Sep;141:111924. doi: 10.1016/j.biopha.2021.111924. Epub 2021 Jul 17.
Silk fibroin is a protein with intrinsic characteristics that make it a good candidate as a scaffold for tissue engineering. Recent works have enhanced its benefits by adding inorganic phases that interact with silk fibroin in different ways. A systematic review was performed in four databases to study the physicochemical and biological performance of silk fibroin nanocomposites. In the last decade, only 51 articles contained either in vitro cell culture models or in vivo tests. The analysis of such works resulted in their classification into the following scaffold types: particles, mats and textiles, films, hydrogels, sponge-like structures, and mixed conformations. From the physicochemical perspective, the inorganic phase imbued in silk fibroin nanocomposites resulted in better stability and mechanical performance. This review revealed that the inorganic phase may be associated with specific biological responses, such as neovascularisation, cell differentiation, cell proliferation, and antimicrobial and immunomodulatory activity. The study of nanocomposites as tissue engineering scaffolds is a highly active area mostly focused on bone and cartilage regeneration with promising results. Nonetheless, there are still many challenges related to their application in other tissues, a better understanding of the interaction between the inorganic and organic phases, and the associated biological response.
丝素蛋白具有内在特性,使其成为组织工程支架的良好候选材料。最近的研究通过添加与丝素蛋白以不同方式相互作用的无机相来增强其优势。在四个数据库中进行了系统综述,以研究丝素蛋白纳米复合材料的物理化学和生物学性能。在过去十年中,只有 51 篇文章包含体外细胞培养模型或体内测试。对这些工作的分析将其分类为以下支架类型:颗粒、垫和纺织品、薄膜、水凝胶、海绵状结构和混合构象。从物理化学的角度来看,丝素蛋白纳米复合材料中引入的无机相导致更好的稳定性和机械性能。本综述表明,无机相可能与特定的生物学反应有关,如新生血管形成、细胞分化、细胞增殖以及抗菌和免疫调节活性。作为组织工程支架的纳米复合材料研究是一个非常活跃的领域,主要集中在骨和软骨再生上,取得了有希望的结果。尽管如此,在其他组织中的应用仍然存在许多挑战,需要更好地理解无机相与有机相之间的相互作用以及相关的生物学反应。