School of Computer Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
Bioinformatics. 2021 Dec 11;37(24):4844-4850. doi: 10.1093/bioinformatics/btab556.
Live cell segmentation is a crucial step in biological image analysis and is also a challenging task because time-lapse microscopy cell sequences usually exhibit complex spatial structures and complicated temporal behaviors. In recent years, numerous deep learning-based methods have been proposed to tackle this task and obtained promising results. However, designing a network with excellent performance requires professional knowledge and expertise and is very time-consuming and labor-intensive. Recently emerged neural architecture search (NAS) methods hold great promise in eliminating these disadvantages, because they can automatically search an optimal network for the task.
We propose a novel NAS-based solution for deep learning-based cell segmentation in time-lapse microscopy images. Different from current NAS methods, we propose (i) jointly searching non-repeatable micro architectures to construct the macro network for exploring greater NAS potential and better performance and (ii) defining a specific search space suitable for the live cell segmentation task, including the incorporation of a convolutional long short-term memory network for exploring the temporal information in time-lapse sequences. Comprehensive evaluations on the 2D datasets from the cell tracking challenge demonstrate the competitiveness of the proposed method compared to the state of the art. The experimental results show that the method is capable of achieving more consistent top performance across all ten datasets than the other challenge methods.
The executable files of the proposed method as well as configurations for each dataset used in the presented experiments will be available for non-commercial purposes from https://github.com/291498346/nas_cellseg.
Supplementary data are available at Bioinformatics online.
活细胞分割是生物图像分析的关键步骤,也是一项具有挑战性的任务,因为延时显微镜细胞序列通常表现出复杂的空间结构和复杂的时间行为。近年来,提出了许多基于深度学习的方法来解决这个任务,并取得了有希望的结果。然而,设计具有优异性能的网络需要专业知识和专业知识,并且非常耗时和费力。最近出现的神经架构搜索 (NAS) 方法在消除这些缺点方面具有很大的潜力,因为它们可以自动为任务搜索最佳网络。
我们提出了一种新的基于 NAS 的深度学习延时显微镜图像细胞分割解决方案。与当前的 NAS 方法不同,我们提出了 (i) 联合搜索不可重复的微体系结构来构建宏网络,以探索更大的 NAS 潜力和更好的性能,以及 (ii) 定义适合活细胞分割任务的特定搜索空间,包括纳入卷积长短期记忆网络以探索延时序列中的时间信息。在细胞跟踪挑战的 2D 数据集上的综合评估表明,与最先进的方法相比,所提出的方法具有竞争力。实验结果表明,该方法能够在所有十个数据集上实现更一致的最高性能,优于其他挑战方法。
所提出方法的可执行文件以及在提出的实验中使用的每个数据集的配置将可用于非商业目的,网址为 https://github.com/291498346/nas_cellseg。
补充数据可在生物信息学在线获得。