Suppr超能文献

利用轻量级深度卷积神经网络实现高效胎儿超声图像自动头围测量的分割。

Efficient fetal ultrasound image segmentation for automatic head circumference measurement using a lightweight deep convolutional neural network.

机构信息

School of Biomedical Engineering, Shenzhen campus of Sun Yat-sen University, Shenzhen, China.

Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China.

出版信息

Med Phys. 2022 Aug;49(8):5081-5092. doi: 10.1002/mp.15700. Epub 2022 May 24.

Abstract

PURPOSE

Fetal head circumference (HC) is an important biometric parameter that can be used to assess fetal development in obstetric clinical practice. Most of the existing methods use deep neural network to accomplish the task of automatic fetal HC measurement from two-dimensional ultrasound images, and some of them achieved relatively high prediction accuracy. However, few of these methods focused on optimizing model efficiency performance. Our purpose is to develop a more efficient approach for this task, which could help doctors measure HC faster and would be more suitable for deployment on devices with scarce computing resources.

METHODS

In this paper, we present a very lightweight deep convolutional neural network to achieve automatic fetal head segmentation from ultrasound images. By using sequential prediction network architecture, the proposed model could perform much faster inference while maintaining a high prediction accuracy. In addition, we used depthwise separable convolution to replace part of the standard convolution in the network and shrunk the input image to further improve model efficiency. After getting fetal head segmentation results, post-processing, including morphological processing and least-squares ellipse fitting, was applied to obtain the fetal HC. All experiments in this work were performed on a public dataset, HC18, with 999 fetal ultrasound images for training and 335 for testing. The dataset is publicly available on https://hc18.grand-challenge.org/ and the code for our method is also publicly available on https://github.com/ApeMocker/CSM-for-fetal-HC-measurement.

RESULTS

Our model has only 0.13 million [M] parameters and can achieve an inference speed of 28 [ms] per frame on a CPU and 0.194 [ms] per frame on a GPU, which far exceeds all existing deep learning-based models as far as we know. Experimental results showed that the method achieved a mean absolute difference of 1.97( ± 1.89) [mm] and a Dice similarity coefficient of 97.61( ± 1.72) [%] on HC18 test set, which were comparable to the state of the art.

CONCLUSION

We presented a very lightweight deep learning-based model to realize fast and accurate fetal head segmentation from two-dimensional ultrasound image, which is then used for calculating the fetal HC. The proposed method could help obstetricians measure the fetal HC more efficiently with high accuracy, and has the potential to be applied to the situations where computing resources are relatively scarce.

摘要

目的

胎儿头围(HC)是评估产科临床胎儿发育的重要生物参数。现有的大多数方法都使用深度神经网络来完成从二维超声图像自动测量胎儿 HC 的任务,其中一些方法达到了相对较高的预测精度。然而,这些方法中很少有专注于优化模型效率性能的。我们的目的是为这项任务开发一种更有效的方法,这有助于医生更快地测量 HC,并且更适合在计算资源稀缺的设备上部署。

方法

在本文中,我们提出了一种非常轻量级的深度卷积神经网络,用于从超声图像中自动分割胎儿头部。通过使用序列预测网络架构,所提出的模型可以在保持高预测精度的同时实现更快的推理。此外,我们使用深度可分离卷积来替换网络中部分标准卷积,并缩小输入图像以进一步提高模型效率。在获得胎儿头部分割结果后,应用后处理,包括形态处理和最小二乘椭圆拟合,以获得胎儿 HC。本工作中的所有实验均在一个公共数据集 HC18 上进行,该数据集有 999 张胎儿超声图像用于训练和 335 张用于测试。该数据集可在 https://hc18.grand-challenge.org/ 上公开获取,我们方法的代码也可在 https://github.com/ApeMocker/CSM-for-fetal-HC-measurement 上公开获取。

结果

我们的模型只有 0.13 百万[M]个参数,在 CPU 上的推理速度为 28[ms]每帧,在 GPU 上的推理速度为 0.194[ms]每帧,这远远超过了我们所知的所有现有的基于深度学习的模型。实验结果表明,该方法在 HC18 测试集上的平均绝对差为 1.97( ± 1.89)[mm],Dice 相似系数为 97.61( ± 1.72)[%],与现有技术相当。

结论

我们提出了一种基于深度学习的非常轻量级模型,用于从二维超声图像中快速准确地分割胎儿头部,然后用于计算胎儿 HC。所提出的方法可以帮助产科医生更高效地测量胎儿 HC,并且具有在计算资源相对稀缺的情况下应用的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验