CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
Metab Eng. 2021 Sep;67:321-329. doi: 10.1016/j.ymben.2021.07.011. Epub 2021 Jul 28.
L-Homoserine is a nonessential chiral amino acid and the precursor of L-threonine and L-methionine. It has great potential to be used in the pharmaceutical, agricultural, cosmetic, and fragrance industries. However, the current low efficiency in the fermentation process of L-homoserine drives up the cost and therefore limits applications. Here, we systematically analyzed the L-homoserine production network in Escherichia coli to design a redox balance route for L-homoserine fermentation from glucose. Production of L-homoserine from L-aspartate via reduction of the tricarboxylic acid cycle intermediate oxaloacetate lacks reducing power. This deficiency could be corrected by activating the glyoxylate shunt and driving the flux from fumarate to L-aspartate with excess reducing power. This redox balance route decreases cell growth pressure and the theoretical yield of L-homoserine is 1.5 mol/mol of glucose without carbon loss. We fine-tuned the flux from fumarate to L-aspartate, deleted competitive and degradative pathways, enhanced L-homoserine efflux, and generated 84.1 g/L L-homoserine with 1.96 g/L/h productivity and 0.50 g/g glucose yield in a fed-batch fermentation. This study proposes a novel balanced redox metabolic network strategy for highly efficient production of L-homoserine and its derivative amino acids.
L-高丝氨酸是一种非必需的手性氨基酸,也是 L-苏氨酸和 L-蛋氨酸的前体。它在制药、农业、化妆品和香料行业有很大的应用潜力。然而,目前 L-高丝氨酸发酵过程中的低效率导致成本增加,从而限制了其应用。在这里,我们系统地分析了大肠杆菌中 L-高丝氨酸的生产网络,设计了一条从葡萄糖发酵生产 L-高丝氨酸的氧化还原平衡途径。通过还原三羧酸循环中间体草酰乙酸来生产 L-高丝氨酸缺乏还原能力。通过激活乙醛酸支路并利用过量的还原力将通量从富马酸驱动到 L-天冬氨酸,可以纠正这种不足。这种氧化还原平衡途径降低了细胞生长的压力,L-高丝氨酸的理论得率为 1.5 mol/mol 葡萄糖,没有碳损失。我们微调了从富马酸到 L-天冬氨酸的通量,删除了竞争和降解途径,增强了 L-高丝氨酸的外排,并在分批补料发酵中产生了 84.1 g/L 的 L-高丝氨酸,生产率为 1.96 g/L/h,葡萄糖得率为 0.50 g/g。本研究提出了一种新的平衡氧化还原代谢网络策略,用于高效生产 L-高丝氨酸及其衍生氨基酸。