Suppr超能文献

通过系统代谢工程策略平衡 AspC 和 AspA 途径,高效生产 l-高丝氨酸。

Balancing the AspC and AspA Pathways of by Systematic Metabolic Engineering Strategy for High-Efficient l-Homoserine Production.

机构信息

The National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China.

出版信息

ACS Synth Biol. 2024 Aug 16;13(8):2457-2469. doi: 10.1021/acssynbio.4c00208. Epub 2024 Jul 23.

Abstract

l-Homoserine is a promising C4 platform compound used in the agricultural, cosmetic, and pharmaceutical industries. Numerous works have been conducted to engineer to be an excellent l-homoserine producer, but it is still unable to meet the industrial-scale demand. Herein, we successfully engineered a plasmid-free and noninducible strain with highly efficient l-homoserine production through balancing AspC and AspA synthesis pathways. First, an initial strain was constructed by increasing the accumulation of the precursor oxaloacetate and attenuating the organic acid synthesis pathway. To remodel the carbon flux toward l-aspartate, a balanced route prone to high yield based on TCA intensity regulation was designed. Subsequently, the main synthetic pathway and the cofactor system were strengthened to reinforce the l-homoserine synthesis. Ultimately, under two-stage DO control, strain HSY43 showed 125.07 g/L l-homoserine production in a 5 L fermenter in 60 h, with a yield of 0.62 g/g glucose and a productivity of 2.08 g/L/h. The titer, yield, and productivity surpassed the highest reported levels for plasmid-free strains in the literature. The strategies adopted in this study can be applied to the production of other l-aspartate family amino acids.

摘要

L-高丝氨酸是一种很有前途的 C4 平台化合物,在农业、化妆品和制药行业中都有广泛的应用。许多研究都致力于将其工程化为生产 L-高丝氨酸的优秀菌株,但仍然无法满足工业规模的需求。在这里,我们通过平衡天冬氨酸半醛脱氢酶和天冬氨酸激酶的合成途径,成功地构建了一种无质粒和非诱导型的菌株,实现了高效的 L-高丝氨酸生产。首先,通过增加前体草酰乙酸的积累和削弱有机酸合成途径,构建了初始菌株。为了将碳通量重塑为 L-天冬氨酸,设计了一条基于 TCA 强度调节的平衡途径,该途径有利于高产。随后,加强了主要合成途径和辅助因子系统,以增强 L-高丝氨酸的合成。最终,在两阶段 DO 控制下,HSY43 菌株在 5 L 发酵罐中 60 h 内生产了 125.07 g/L 的 L-高丝氨酸,葡萄糖得率为 0.62 g/g,生产强度为 2.08 g/L/h。该产量、得率和生产强度超过了文献中报道的无质粒菌株的最高水平。本研究中采用的策略可应用于其他 L-天冬氨酸族氨基酸的生产。

相似文献

6
Engineering Escherichia coli for l-homoserine production.工程大肠杆菌生产 l-高丝氨酸。
J Basic Microbiol. 2023 Feb;63(2):168-178. doi: 10.1002/jobm.202200488. Epub 2022 Oct 25.
10
Metabolic Engineering of for Efficient Production of Ectoine.用于高效生产四氢嘧啶的代谢工程
J Agric Food Chem. 2025 Jan 8;73(1):646-654. doi: 10.1021/acs.jafc.4c07640. Epub 2024 Dec 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验