Suppr超能文献

使用深度学习距离和氢键约束进行 CASP14 中的蛋白质结构预测。

Protein structure prediction using deep learning distance and hydrogen-bonding restraints in CASP14.

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.

School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China.

出版信息

Proteins. 2021 Dec;89(12):1734-1751. doi: 10.1002/prot.26193. Epub 2021 Aug 7.

Abstract

In this article, we report 3D structure prediction results by two of our best server groups ("Zhang-Server" and "QUARK") in CASP14. These two servers were built based on the D-I-TASSER and D-QUARK algorithms, which integrated four newly developed components into the classical protein folding pipelines, I-TASSER and QUARK, respectively. The new components include: (a) a new multiple sequence alignment (MSA) collection tool, DeepMSA2, which is extended from the DeepMSA program; (b) a contact-based domain boundary prediction algorithm, FUpred, to detect protein domain boundaries; (c) a residual convolutional neural network-based method, DeepPotential, to predict multiple spatial restraints by co-evolutionary features derived from the MSA; and (d) optimized spatial restraint energy potentials to guide the structure assembly simulations. For 37 FM targets, the average TM-scores of the first models produced by D-I-TASSER and D-QUARK were 96% and 112% higher than those constructed by I-TASSER and QUARK, respectively. The data analysis indicates noticeable improvements produced by each of the four new components, especially for the newly added spatial restraints from DeepPotential and the well-tuned force field that combines spatial restraints, threading templates, and generic knowledge-based potentials. However, challenges still exist in the current pipelines. These include difficulties in modeling multi-domain proteins due to low accuracy in inter-domain distance prediction and modeling protein domains from oligomer complexes, as the co-evolutionary analysis cannot distinguish inter-chain and intra-chain distances. Specifically tuning the deep learning-based predictors for multi-domain targets and protein complexes may be helpful to address these issues.

摘要

在本文中,我们报告了我们两个最佳服务器组(“Zhang-Server”和“QUARK”)在 CASP14 中的 3D 结构预测结果。这两个服务器是基于 D-I-TASSER 和 D-QUARK 算法构建的,它们分别将四个新开发的组件集成到经典的蛋白质折叠管道中,即 I-TASSER 和 QUARK。新组件包括:(a)一个新的多重序列比对(MSA)收集工具 DeepMSA2,它是从 DeepMSA 程序扩展而来的;(b)一种基于接触的域边界预测算法 FUpred,用于检测蛋白质域边界;(c)一种基于残差卷积神经网络的方法 DeepPotential,用于通过从 MSA 中提取的共进化特征预测多个空间约束;(d)优化的空间约束能势,以指导结构组装模拟。对于 37 个 FM 靶标,D-I-TASSER 和 D-QUARK 产生的第一个模型的平均 TM 评分分别比 I-TASSER 和 QUARK 构建的模型高 96%和 112%。数据分析表明,四个新组件中的每一个都产生了显著的改进,特别是 DeepPotential 提供的新添加的空间约束和结合空间约束、串联模板和通用基于知识的势能的优化力场。然而,当前管道仍然存在挑战。这些挑战包括由于跨域距离预测的准确性低和建模寡聚复合物中的蛋白质域的准确性低,在建模多域蛋白时存在困难,因为共进化分析无法区分链间和链内距离。针对多域靶标和蛋白质复合物专门调整基于深度学习的预测器可能有助于解决这些问题。

相似文献

1
Protein structure prediction using deep learning distance and hydrogen-bonding restraints in CASP14.
Proteins. 2021 Dec;89(12):1734-1751. doi: 10.1002/prot.26193. Epub 2021 Aug 7.
2
Deep-learning contact-map guided protein structure prediction in CASP13.
Proteins. 2019 Dec;87(12):1149-1164. doi: 10.1002/prot.25792. Epub 2019 Aug 14.
3
Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12.
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):136-151. doi: 10.1002/prot.25414. Epub 2017 Nov 14.
5
Integration of QUARK and I-TASSER for Ab Initio Protein Structure Prediction in CASP11.
Proteins. 2016 Sep;84 Suppl 1(Suppl 1):76-86. doi: 10.1002/prot.24930. Epub 2015 Sep 23.
7
Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10.
Proteins. 2014 Feb;82 Suppl 2(0 2):175-87. doi: 10.1002/prot.24341. Epub 2013 Aug 31.
8
Improving protein tertiary structure prediction by deep learning and distance prediction in CASP14.
Proteins. 2022 Jan;90(1):58-72. doi: 10.1002/prot.26186. Epub 2021 Jul 27.
9
Template-based protein structure prediction in CASP11 and retrospect of I-TASSER in the last decade.
Proteins. 2016 Sep;84 Suppl 1(Suppl 1):233-46. doi: 10.1002/prot.24918. Epub 2015 Sep 18.
10
Analysis of distance-based protein structure prediction by deep learning in CASP13.
Proteins. 2019 Dec;87(12):1069-1081. doi: 10.1002/prot.25810. Epub 2019 Sep 13.

引用本文的文献

1
Chemosensory Receptors in Vertebrates: Structure and Computational Modeling Insights.
Int J Mol Sci. 2025 Jul 10;26(14):6605. doi: 10.3390/ijms26146605.
3
Protein structure prediction via deep learning: an in-depth review.
Front Pharmacol. 2025 Apr 3;16:1498662. doi: 10.3389/fphar.2025.1498662. eCollection 2025.
4
In silico design of multi-epitope adhesin protein vaccines.
Heliyon. 2024 Sep 7;10(18):e37536. doi: 10.1016/j.heliyon.2024.e37536. eCollection 2024 Sep 30.
5
Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments.
Chem Rev. 2024 Apr 10;124(7):3932-3977. doi: 10.1021/acs.chemrev.3c00550. Epub 2024 Mar 27.
6
Recent Progress of Protein Tertiary Structure Prediction.
Molecules. 2024 Feb 13;29(4):832. doi: 10.3390/molecules29040832.
10

本文引用的文献

1
DisCovER: distance- and orientation-based covariational threading for weakly homologous proteins.
Proteins. 2022 Feb;90(2):579-588. doi: 10.1002/prot.26254. Epub 2021 Oct 11.
3
Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations.
Cell Rep Methods. 2021 Jul 26;1(3). doi: 10.1016/j.crmeth.2021.100014. Epub 2021 Jun 21.
4
Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks.
PLoS Comput Biol. 2021 Mar 26;17(3):e1008865. doi: 10.1371/journal.pcbi.1008865. eCollection 2021 Mar.
5
FASPR: an open-source tool for fast and accurate protein side-chain packing.
Bioinformatics. 2020 Jun 1;36(12):3758-3765. doi: 10.1093/bioinformatics/btaa234.
6
FUpred: detecting protein domains through deep-learning-based contact map prediction.
Bioinformatics. 2020 Jun 1;36(12):3749-3757. doi: 10.1093/bioinformatics/btaa217.
7
Improved protein structure prediction using predicted interresidue orientations.
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1496-1503. doi: 10.1073/pnas.1914677117. Epub 2020 Jan 2.
9
MGnify: the microbiome analysis resource in 2020.
Nucleic Acids Res. 2020 Jan 8;48(D1):D570-D578. doi: 10.1093/nar/gkz1035.
10
Detecting distant-homology protein structures by aligning deep neural-network based contact maps.
PLoS Comput Biol. 2019 Oct 17;15(10):e1007411. doi: 10.1371/journal.pcbi.1007411. eCollection 2019 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验