Toyota Technological Institute at Chicago, Chicago, Illinois.
Proteins. 2019 Dec;87(12):1069-1081. doi: 10.1002/prot.25810. Epub 2019 Sep 13.
This paper reports the CASP13 results of distance-based contact prediction, threading, and folding methods implemented in three RaptorX servers, which are built upon the powerful deep convolutional residual neural network (ResNet) method initiated by us for contact prediction in CASP12. On the 32 CASP13 FM (free-modeling) targets with a median multiple sequence alignment (MSA) depth of 36, RaptorX yielded the best contact prediction among 46 groups and almost the best 3D structure modeling among all server groups without time-consuming conformation sampling. In particular, RaptorX achieved top L/5, L/2, and L long-range contact precision of 70%, 58%, and 45%, respectively, and predicted correct folds (TMscore > 0.5) for 18 of 32 targets. Further, RaptorX predicted correct folds for all FM targets with >300 residues (T0950-D1, T0969-D1, and T1000-D2) and generated the best 3D models for T0950-D1 and T0969-D1 among all groups. This CASP13 test confirms our previous findings: (a) predicted distance is more useful than contacts for both template-based and free modeling; and (b) structure modeling may be improved by integrating template and coevolutionary information via deep learning. This paper will discuss progress we have made since CASP12, the strength and weakness of our methods, and why deep learning performed much better in CASP13.
本文报告了基于距离的接触预测、穿线和折叠方法的 CASP13 结果,这些方法在三个 RaptorX 服务器中实现,这些服务器是基于我们在 CASP12 中用于接触预测的强大的深度卷积残差神经网络(ResNet)方法构建的。在 32 个 CASP13 FM(自由建模)靶标中,中位数多重序列比对(MSA)深度为 36,RaptorX 在 46 个组中获得了最佳的接触预测,在所有服务器组中几乎获得了最佳的 3D 结构建模,而无需耗时的构象采样。特别是, RaptorX 实现了 L/5、L/2 和 L 长程接触精度分别为 70%、58%和 45%的最佳精度,并预测了 32 个靶标中的 18 个正确折叠(TMscore > 0.5)。此外, RaptorX 预测了所有 >300 个残基的 FM 靶标(T0950-D1、T0969-D1 和 T1000-D2)的正确折叠,并在所有组中为 T0950-D1 和 T0969-D1 生成了最佳的 3D 模型。这项 CASP13 测试证实了我们之前的发现:(a)预测的距离比基于模板和自由建模的接触更有用;(b)通过深度学习可以通过整合模板和共进化信息来提高结构建模的性能。本文将讨论我们自 CASP12 以来取得的进展、我们方法的优缺点,以及为什么深度学习在 CASP13 中表现得更好。