Suppr超能文献

工程大肠杆菌捕获二氧化碳和氢气:依赖氢的 CO 还原为甲酸盐。

Capture of carbon dioxide and hydrogen by engineered Escherichia coli: hydrogen-dependent CO reduction to formate.

机构信息

Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60439, Frankfurt am Main, Germany.

出版信息

Appl Microbiol Biotechnol. 2021 Aug;105(14-15):5861-5872. doi: 10.1007/s00253-021-11463-z. Epub 2021 Jul 31.

Abstract

In times of global climate change and the fear of dwindling resources, we are facing different considerable challenges such as the replacement of fossil fuel-based energy carriers with the coincident maintenance of the increasing energy supply of our growing world population. Therefore, CO capturing and H storing solutions are urgently needed. In this study, we demonstrate the production of a functional and biotechnological interesting enzyme complex from acetogenic bacteria, the hydrogen-dependent CO reductase (HDCR), in the well-known model organism Escherichia coli. We identified the metabolic bottlenecks of the host organisms for the production of the HDCR enzyme complex. Here we show that the recombinant expression of a heterologous enzyme complex transforms E. coli into a whole-cell biocatalyst for hydrogen-driven CO reduction to formate without the need of any external co-factors or endogenous enzymes in the reaction process. This shifts the industrial platform organism E. coli more and more into the focus as biocatalyst for CO-capturing and H-storage. KEY POINTS: • A functional HDCR enzyme complex was heterologously produced in E. coli. • The metabolic bottlenecks for HDCR production were identified. • HDCR enabled E. coli cell to capture and store H and CO in the form of formate.

摘要

在全球气候变化和资源匮乏的时代,我们面临着许多重大挑战,例如用基于化石燃料的能源载体替代,同时保持我们不断增长的世界人口的能源供应增加。因此,迫切需要 CO 捕获和 H 存储解决方案。在这项研究中,我们展示了从产乙酸菌中生产功能和生物技术上有趣的酶复合物,即依赖氢的 CO 还原酶(HDCR),在著名的模式生物大肠杆菌中。我们确定了宿主生物生产 HDCR 酶复合物的代谢瓶颈。在这里,我们表明,重组表达异源酶复合物将大肠杆菌转化为全细胞生物催化剂,用于在无需任何外部辅助因子或反应过程中内源性酶的情况下,由氢气驱动将 CO 还原为甲酸盐。这使得工业平台生物大肠杆菌越来越多地成为 CO 捕获和 H 存储的生物催化剂。 关键点: • 在大肠杆菌中异源生产了功能性 HDCR 酶复合物。 • 确定了生产 HDCR 的代谢瓶颈。 • HDCR 使大肠杆菌能够以甲酸盐的形式捕获和存储 H 和 CO。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60b5/8390402/64e4fcfe7eb0/253_2021_11463_Fig1_HTML.jpg

相似文献

1
Capture of carbon dioxide and hydrogen by engineered Escherichia coli: hydrogen-dependent CO reduction to formate.
Appl Microbiol Biotechnol. 2021 Aug;105(14-15):5861-5872. doi: 10.1007/s00253-021-11463-z. Epub 2021 Jul 31.
2
Harnessing Escherichia coli for Bio-Based Production of Formate under Pressurized H and CO Gases.
Appl Environ Microbiol. 2021 Oct 14;87(21):e0029921. doi: 10.1128/AEM.00299-21. Epub 2021 Sep 8.
3
CO Metabolism in the Acetogen Acetobacterium woodii.
Appl Environ Microbiol. 2015 Sep 1;81(17):5949-56. doi: 10.1128/AEM.01772-15. Epub 2015 Jun 19.
5
Whole-cell biocatalysis for hydrogen storage and syngas conversion to formate using a thermophilic acetogen.
Biotechnol Biofuels. 2020 Feb 28;13:32. doi: 10.1186/s13068-020-1670-x. eCollection 2020.
6
Hydrogenation of CO at ambient pressure catalyzed by a highly active thermostable biocatalyst.
Biotechnol Biofuels. 2018 Sep 1;11:237. doi: 10.1186/s13068-018-1236-3. eCollection 2018.
7
Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase.
Science. 2013 Dec 13;342(6164):1382-5. doi: 10.1126/science.1244758.
8
Formate-driven H production by whole cells of Thermoanaerobacter kivui.
Biotechnol Biofuels Bioprod. 2022 May 11;15(1):48. doi: 10.1186/s13068-022-02147-5.
9
Efficient whole cell biocatalyst for formate-based hydrogen production.
Biotechnol Biofuels. 2018 Apr 2;11:93. doi: 10.1186/s13068-018-1082-3. eCollection 2018.
10

引用本文的文献

1
Metabolic Engineering of for Enhanced Diols Production from Acetate.
ACS Synth Biol. 2025 Apr 18;14(4):1204-1219. doi: 10.1021/acssynbio.4c00839. Epub 2025 Mar 18.
3
Direct Biocatalytic Processes for CO Capture as a Green Tool to Produce Value-Added Chemicals.
Molecules. 2023 Jul 19;28(14):5520. doi: 10.3390/molecules28145520.
4
Formate-driven H production by whole cells of Thermoanaerobacter kivui.
Biotechnol Biofuels Bioprod. 2022 May 11;15(1):48. doi: 10.1186/s13068-022-02147-5.
5
Fantastic [FeFe]-Hydrogenases and Where to Find Them.
Front Microbiol. 2022 Mar 2;13:853626. doi: 10.3389/fmicb.2022.853626. eCollection 2022.
6
Harnessing Escherichia coli for Bio-Based Production of Formate under Pressurized H and CO Gases.
Appl Environ Microbiol. 2021 Oct 14;87(21):e0029921. doi: 10.1128/AEM.00299-21. Epub 2021 Sep 8.

本文引用的文献

1
Whole-cell biocatalysis for hydrogen storage and syngas conversion to formate using a thermophilic acetogen.
Biotechnol Biofuels. 2020 Feb 28;13:32. doi: 10.1186/s13068-020-1670-x. eCollection 2020.
2
Growth of E. coli on formate and methanol via the reductive glycine pathway.
Nat Chem Biol. 2020 May;16(5):538-545. doi: 10.1038/s41589-020-0473-5. Epub 2020 Feb 10.
3
New Horizons in Acetogenic Conversion of One-Carbon Substrates and Biological Hydrogen Storage.
Trends Biotechnol. 2019 Dec;37(12):1344-1354. doi: 10.1016/j.tibtech.2019.05.008. Epub 2019 Jun 27.
4
Synthetic Methanol and Formate Assimilation Via Modular Engineering and Selection Strategies.
Curr Issues Mol Biol. 2019;33:237-248. doi: 10.21775/cimb.033.237. Epub 2019 Jun 5.
5
Hydrogenation of CO at ambient pressure catalyzed by a highly active thermostable biocatalyst.
Biotechnol Biofuels. 2018 Sep 1;11:237. doi: 10.1186/s13068-018-1236-3. eCollection 2018.
6
In Vivo Assimilation of One-Carbon via a Synthetic Reductive Glycine Pathway in Escherichia coli.
ACS Synth Biol. 2018 Sep 21;7(9):2023-2028. doi: 10.1021/acssynbio.8b00131. Epub 2018 Jul 2.
7
Efficient whole cell biocatalyst for formate-based hydrogen production.
Biotechnol Biofuels. 2018 Apr 2;11:93. doi: 10.1186/s13068-018-1082-3. eCollection 2018.
8
Efficient Hydrogen-Dependent Carbon Dioxide Reduction by Escherichia coli.
Curr Biol. 2018 Jan 8;28(1):140-145.e2. doi: 10.1016/j.cub.2017.11.050. Epub 2017 Dec 28.
9
Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review.
Bioresour Technol. 2018 Jan;247:1059-1068. doi: 10.1016/j.biortech.2017.09.050. Epub 2017 Sep 8.
10
Programmatic access to bioinformatics tools from EMBL-EBI update: 2017.
Nucleic Acids Res. 2017 Jul 3;45(W1):W550-W553. doi: 10.1093/nar/gkx273.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验