Suppr超能文献

利用自动线性模型(ALM)识别与灌溉指数相关的影响地下水与人类健康的参数,该研究在印度半干旱地区展开。

Identifying influencing groundwater parameter on human health associate with irrigation indices using the Automatic Linear Model (ALM) in a semi-arid region in India.

机构信息

Department of Civil Engineering, M. Kumarasamy College of Engineering, Karur, Tamilnadu, India.

United Engineers, Erode, Tamilnadu, India.

出版信息

Environ Res. 2021 Nov;202:111778. doi: 10.1016/j.envres.2021.111778. Epub 2021 Jul 28.

Abstract

Quality of water for the purposes of irrigation is a serious threat to the sustainable development of the agriculture sector. The main objective of this study is to evaluate the suitability of groundwater for irrigation purposes using various irrigation indices such as: Sodium Absorption Ratio (SAR), Residual Sodium Carbonate (RSC), Percentage Sodium (%Na), Magnesium Hazards (MH), Permeability Index (PI), Potential Salinity (PS), Residual Sodium Bicarbonate (RBSC), Kelly's Ratio (KR), Synthetic Harmful Coefficient (K), and Exchangeable Sodium Percentage (ESP). A total of 30 samples were collected from the bore well of agricultural farmland and analysed for cations and anions. MH reveal that 53.33 % of samples exceed the permissible level. PS shows that 43.33 % of samples are marginally affected and 33.33 % of samples are unsuitable for use in irrigation. About 76 % of the groundwater samples were suitable for irrigation and the remainder require treatment before use. Automatic Linear Modelling (ALM) is used to predict the major influence parameter for MH and PS are RBSC, RSC and K value of groundwater. ALM shows that excess magnesium concentration and salinity are the primary factors that affect the suitability of groundwater for irrigation use. This integrated technique showed that water from approximately 25 % of the sample locations would require treatment before use. This study will improve the pattern of irrigation, identify sources of contamination and highlight the importance of organic fertilizers to develop and enhance the sustainable practices in the study region.

摘要

灌溉用水的质量对农业部门的可持续发展构成了严重威胁。本研究的主要目的是使用各种灌溉指标,如钠吸收比(SAR)、剩余碳酸钠(RSC)、钠离子百分比(%Na)、镁害(MH)、渗透率指数(PI)、潜在盐度(PS)、剩余碳酸氢钠(RBSC)、凯利比(KR)、综合有害系数(K)和可交换钠百分比(ESP),评估地下水用于灌溉的适宜性。从农业农田的水井中采集了 30 个样本,用于分析阳离子和阴离子。MH 显示,有 53.33%的样本超过了允许水平。PS 表明,有 43.33%的样本受到轻微影响,33.33%的样本不适合用于灌溉。大约 76%的地下水样本适合灌溉,其余样本在使用前需要处理。自动线性建模(ALM)用于预测 MH 的主要影响参数,而 PS 的主要影响参数是地下水的 RBSC、RSC 和 K 值。ALM 表明,镁浓度和盐分过高是影响地下水灌溉适宜性的主要因素。这项综合技术表明,大约 25%的样本地点的水在使用前需要处理。本研究将改善灌溉模式,确定污染来源,并强调有机肥的重要性,以在研究区域发展和加强可持续实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验