Suppr超能文献

NFAT 通过其反馈调节剂指示核质阻尼振荡。

NFAT indicates nucleocytoplasmic damped oscillation via its feedback modulator.

机构信息

Divison of Molecular and Vascular Biology, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.

Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.

出版信息

Biochem Biophys Res Commun. 2021 Sep 24;571:201-209. doi: 10.1016/j.bbrc.2021.07.072. Epub 2021 Jul 28.

Abstract

Cell signaling and the following gene regulation are tightly regulated to keep homeostasis. NF-κB is a famous key transcription factor for inflammatory cell regulations that obtain a closed feedback loop with IκB. Similarly, we show here, NFAT is also tightly regulated via its downstream target, down syndrome critical region (DSCR)-1. In primary cultured endothelium, either shear stress or VEGF treatment revealed quick NFAT1 nuclear localization following the DSCR-1 transactivation, which in turn induced NFAT1 cytoplasm sequestration. Interestingly, both NFAT and DSCR-1 can be competitive substrates for calcineurin phosphatase and DSCR-1 is known to unstable protein, which caused NFAT1-nucleocytoplasmic damped oscillation via sustained shear stress or VEGF stimulation in endothelial cell (EC)s. To understand the molecular mechanism underlying the NFAT1 oscillation, we built a mathematical model of spatiotemporal regulation of NFAT1 combined with calcineurin and DSCR-1. Theoretically, manipulation of DSCR-1 expression in simulation predicted that DSCR-1 reduction would cause nuclear retention of dephosphorylated NFAT1 and disappearance of NFAT1 oscillation. To confirm this in ECs, DSCR-1 knockdown analysis was performed. DSCR-1 reduction indeed increased dephosphorylated NFAT1 in both the nucleus and cytoplasm, which eventually led to nuclear retention of NFAT1. Taken together, these studies suggest that DSCR-1 is a responsible critical factor for NFAT1 nucleocytoplasmic oscillation in shear stress or VEGF treated ECs. Our mathematical model successfully reproduced the experimental observations of NFAT1 dynamics. Combined mathematical and experimental approaches would provide a quantitative understanding way for the spatiotemporal NFAT1 feedback system.

摘要

细胞信号转导和随后的基因调控受到严格控制,以维持体内平衡。NF-κB 是炎症细胞调节的著名关键转录因子,与 IκB 形成封闭的反馈环。同样,我们在这里也表明,NFAT 也通过其下游靶标,唐氏综合征关键区域(DSCR)-1 受到严格调控。在原代培养的内皮细胞中,无论是切应力还是 VEGF 处理,都能迅速观察到 NFAT1 核定位,随后是 DSCR-1 的反式激活,进而诱导 NFAT1 细胞质隔离。有趣的是,NFAT 和 DSCR-1 都是钙调神经磷酸酶的竞争性底物,而 DSCR-1 是一种不稳定的蛋白质,这导致 NFAT1 核质振荡通过持续的切应力或 VEGF 刺激在血管内皮细胞(EC)中发生。为了理解 NFAT1 振荡的分子机制,我们构建了一个结合钙调神经磷酸酶和 DSCR-1 的 NFAT1 时空调控的数学模型。从理论上讲,在模拟中操纵 DSCR-1 的表达,预测 DSCR-1 的减少会导致去磷酸化的 NFAT1 核保留和 NFAT1 振荡的消失。为了在 ECs 中证实这一点,进行了 DSCR-1 敲低分析。DSCR-1 的减少确实增加了细胞核和细胞质中去磷酸化的 NFAT1,最终导致 NFAT1 的核保留。总之,这些研究表明,DSCR-1 是切应力或 VEGF 处理的 ECs 中 NFAT1 核质振荡的关键因素。我们的数学模型成功地再现了 NFAT1 动力学的实验观察。数学和实验相结合的方法为时空 NFAT1 反馈系统提供了一种定量理解的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验