Suppr超能文献

基于MRI的影像组学列线图作为预测肺腺癌胸椎转移中外显子19和21中表皮生长因子受体(EGFR)突变的潜在生物标志物

MRI-Based Radiomics Nomogram as a Potential Biomarker to Predict the EGFR Mutations in Exon 19 and 21 Based on Thoracic Spinal Metastases in Lung Adenocarcinoma.

作者信息

Cao Ran, Dong Yue, Wang Xiaoyu, Ren Meihong, Wang Xingling, Zhao Nannan, Yu Tao, Zhang Lu, Luo Yahong, Cui E-Nuo, Jiang Xiran

机构信息

Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, 110122, China.

Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China.

出版信息

Acad Radiol. 2022 Mar;29(3):e9-e17. doi: 10.1016/j.acra.2021.06.004. Epub 2021 Jul 29.

Abstract

RATIONALE AND OBJECTIVES

Preoperative identifications of epidermal growth factor receptor (EGFR) mutation subtypes based on the MRI image of spinal metastases are needed to provide individualized therapy, but has not been previously investigated. This study aims to develop and evaluate an MRI-based radiomics nomogram for differentiating the exon 19 and 21 in EGFR mutation from spinal bone metastases in patients with primary lung adenocarcinoma.

MATERIALS AND METHODS

A total of 76 patients underwent T1-weighted and T2-weighted fat-suppressed MRI scans were enrolled in this study, 38 were positive for EGFR mutation in exon 19 and 38 were in exon 21.MRI imaging features were extracted and selected from each MRI pulse sequence, and used to form the radiomics signature. A radiomics nomogram was developed integrating the radiomics signature and important clinical factors with receiver operating characteristic, calibration and decision curve analysis to assess the nomogram. Clinical characteristics were analyzed with Mann-Whitney U and Chi-Square tests to identify the most important factors.

RESULTS

A total of 6 features were selected as the most discriminative predictors from the two MRI pulse sequences. The nomogram integrating the combined radiomics signature, age and CEA level generated good prediction performance in the training (AUCs, nomogram vs. combined radiomics signature vs. clinical model, 0.90 vs. 0.87 vs. 0.59) and validation (AUCs, nomogram vs. combined radiomics signature vs. clinical model, 0.88 vs. 0.86 vs. 0.72) cohort. DCA analysis confirmed the potential clinical utility of the nomogram.

CONCLUSION

This study demonstrated that MRI features from spinal bone metastases can be used to prognosticate EGFR mutation subtypes in exon 19 and 21. The developed pre-treatment nomogram can potentially guide treatments for lung adenocarcinoma patients.

摘要

原理与目的

基于脊柱转移瘤的MRI图像对表皮生长因子受体(EGFR)突变亚型进行术前鉴别,以提供个体化治疗,但此前尚未有研究。本研究旨在开发并评估一种基于MRI的影像组学列线图,用于区分原发性肺腺癌患者脊柱骨转移中EGFR突变的19外显子和21外显子。

材料与方法

本研究共纳入76例行T1加权和T2加权脂肪抑制MRI扫描的患者,其中38例为EGFR 19外显子突变阳性,38例为21外显子突变阳性。从每个MRI脉冲序列中提取并选择MRI成像特征,用于形成影像组学特征。通过整合影像组学特征和重要临床因素,利用受试者操作特征曲线、校准和决策曲线分析开发影像组学列线图,以评估该列线图。采用Mann-Whitney U检验和卡方检验分析临床特征,以确定最重要的因素。

结果

从两个MRI脉冲序列中总共选择了6个特征作为最具鉴别力的预测因子。整合联合影像组学特征、年龄和CEA水平的列线图在训练队列(AUC,列线图vs.联合影像组学特征vs.临床模型,0.90 vs. 0.87 vs. 0.59)和验证队列(AUC,列线图vs.联合影像组学特征vs.临床模型,0.88 vs. 0.86 vs. 0.72)中产生了良好的预测性能。DCA分析证实了列线图的潜在临床实用性。

结论

本研究表明,脊柱骨转移瘤的MRI特征可用于预测EGFR 19和21外显子的突变亚型。所开发的治疗前列线图可能为肺腺癌患者的治疗提供指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验