School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, 110122, People's Republic of China.
Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China.
BMC Cancer. 2022 Aug 13;22(1):889. doi: 10.1186/s12885-022-09985-4.
This study aimed to develop and externally validate contrast-enhanced (CE) T1-weighted MRI-based radiomics for the identification of epidermal growth factor receptor (EGFR) mutation, exon-19 deletion and exon-21 L858R mutation from MR imaging of spinal bone metastasis from primary lung adenocarcinoma.
A total of 159 patients from our hospital between January 2017 and September 2021 formed a primary set, and 24 patients from another center between January 2017 and October 2021 formed an independent validation set. Radiomics features were extracted from the CET1 MRI using the Pyradiomics method. The least absolute shrinkage and selection operator (LASSO) regression was applied for selecting the most predictive features. Radiomics signatures (RSs) were developed based on the primary training set to predict EGFR mutations and differentiate between exon-19 deletion and exon-21 L858R. The RSs were validated on the internal and external validation sets using the Receiver Operating Characteristic (ROC) curve analysis.
Eight, three, and five most predictive features were selected to build RS-EGFR, RS-19, and RS-21 for predicting EGFR mutation, exon-19 deletion and exon-21 L858R, respectively. The RSs generated favorable prediction efficacies for the primary (AUCs, RS-EGFR vs. RS-19 vs. RS-21, 0.851 vs. 0.816 vs. 0.814) and external validation (AUCs, RS-EGFR vs. RS-19 vs. RS-21, 0.807 vs. 0.742 vs. 0.792) sets.
Radiomics features from the CE MRI could be used to detect the EGFR mutation, increasing the certainty of identifying exon-19 deletion and exon-21 L858R mutations based on spinal metastasis MR imaging.
本研究旨在开发基于对比增强(CE)T1 加权 MRI 的放射组学,以从原发性肺腺癌脊柱骨转移的 MR 图像中识别表皮生长因子受体(EGFR)突变、外显子 19 缺失和外显子 21 L858R 突变。
本研究纳入了 2017 年 1 月至 2021 年 9 月期间我院的 159 例患者(原始组),以及 2017 年 1 月至 2021 年 10 月期间另一中心的 24 例患者(验证组),并使用 Pyradiomics 方法从 CET1 MRI 中提取放射组学特征。应用最小绝对收缩和选择算子(LASSO)回归选择最具预测性的特征。基于原始训练集开发放射组学特征(RS),以预测 EGFR 突变并区分外显子 19 缺失和外显子 21 L858R。使用 ROC 曲线分析对内部和外部验证集进行 RSs 验证。
分别选择 8、3 和 5 个最具预测性的特征来构建用于预测 EGFR 突变、外显子 19 缺失和外显子 21 L858R 的 RS-EGFR、RS-19 和 RS-21。RSs 对原始数据集(AUCs,RS-EGFR 与 RS-19 与 RS-21,0.851 与 0.816 与 0.814)和外部验证集(AUCs,RS-EGFR 与 RS-19 与 RS-21,0.807 与 0.742 与 0.792)均具有良好的预测效果。
CE MRI 的放射组学特征可用于检测 EGFR 突变,增加基于脊柱转移 MRI 识别外显子 19 缺失和外显子 21 L858R 突变的确定性。