Shi Lang, Zhang Yafei, Xia Yao, Li Chenglong, Song Zhixia, Zhu Jiefu
Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei 443000, China.
Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
Cell Signal. 2021 Oct;86:110101. doi: 10.1016/j.cellsig.2021.110101. Epub 2021 Jul 30.
BACKGROUND: Septic acute kidney injury (AKI) is associated with increased morbidity and mortality in critically ill patients. MicroRNA is reportedly involved in sepsis-induced organ dysfunction, while the role of miR-150 in septic AKI remains ambiguous. METHODS: Quantitative real-time PCR (qRT-PCR) was carried out to examine miR-150-5p expression in both septic AKI patients and volunteers without septic AKI. Lipopolysaccharide (LPS) was used to treat renal tubular epithelial cell line HK-2 and C57/BL6 mice to establish in vitro and in vivo sepsis-induced AKI models. Cell apoptosis was determined using TdT-mediated dUTP nick end labeling (TUNEL) staining and flow cytometry. Cell viability was tested using a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Renal pathological changes were examined via Hematoxylin-Eosin (H&E) staining, and renal function was measured via blood urea nitrogen (BUN) and creatinine (Cre) measurements. The MEKK3/JNK profile and oxidative stress markers (including COX2 and iNOS) were examined by immunoblot analysis, and the expression levels of inflammatory cytokines (TNF-α, IL-6, and IL-1β) and oxidative stress markers (MDA, SOD, and CAT) were evaluated by ELISA. RESULTS: MiR-150-5p was down-regulated in the serum of patients with septic AKI (compared to healthy volunteers). Moreover, miR-150-5p levels were lower in LPS-treated HK-2 cell lines and in the septic AKI mouse model. Additionally, Stat-3 activation mediated the decrease of miR-150-5p. Functionally, miR-150-5p agomir attenuated LPS-induced apoptosis in HK-2 cells, in addition to renal inflammatory responses and oxidative stress. In contrast, inhibition of miR-150-5p aggravated LPS-induced apoptosis, inflammatory reactions and oxidative stress. Furthermore, miR-150-5p agomir decreased BUN and Scr levels in the septic AKI mice model repressed TNF-α, IL-6 and IL-1β, and up-regulated SOD and CAT down-regulated MDA in the kidney tissues. Moreover, miR-150-5p was identified as a target gene for Stat3, and the overexpression of Stat3 partially promoted the effect of down-regulating miR-150-5p on LPS-induced HK2 cell injury. Mechanistically, the MEKK3/JNK pathway was identified as a functional target of miR-150-5p, and the knockdown of MEKK3 showed protective effects against LPS mediated HK-2 cell apoptosis. CONCLUSION: Stat3-mediated miR-150-5p exerted protective effects in sepsis-induced acute kidney injury by regulating the MEKK3/JNK pathway.
Phytomedicine. 2023-2
Clin Exp Nephrol. 2025-4-30
Mol Cell Biochem. 2025-3-25
J Transl Med. 2024-11-28
Am J Pathol. 2025-1
Cells. 2024-9-16