Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
Bioorg Med Chem. 2021 Sep 1;45:116324. doi: 10.1016/j.bmc.2021.116324. Epub 2021 Jul 22.
The transcription master regulator MYC plays an essential role in regulating major cellular programs and is a well-established therapeutic target in cancer. However, MYC targeting for drug discovery is challenging. New therapeutic approaches to control MYC-dependent malignancy are urgently needed. The mitogen-activated protein kinase kinase 3 (MKK3) binds and activates MYC in different cell types, and disruption of MKK3-MYC protein-protein interaction may provide a new strategy to target MYC-driven programs. However, there is no perturbagen available to interrogate and control this signaling arm. In this study, we assessed the drugability of the MKK3-MYC complex and discovered the first chemical tool to regulate MKK3-mediated MYC activation. We have designed a short 44-residue inhibitory peptide and developed a cell lysate-based time-resolved fluorescence resonance energy transfer (TR-FRET) assay to discover the first small molecule MKK3-MYC PPI inhibitor. We have optimized and miniaturized the assay into an ultra-high-throughput screening (uHTS) 1536-well plate format. The pilot screen of ~6,000 compounds of a bioactive chemical library followed by multiple secondary and orthogonal assays revealed a quinoline derivative SGI-1027 as a potent inhibitor of MKK3-MYC PPI. We have shown that SGI-1027 disrupts the MKK3-MYC complex in cells and in vitro and inhibits MYC transcriptional activity in colon and breast cancer cells. In contrast, SGI-1027 does not inhibit MKK3 kinase activity and does not interfere with well-known MKK3-p38 and MYC-MAX complexes. Together, our studies demonstrate the drugability of MKK3-MYC PPI, provide the first chemical tool to interrogate its biological functions, and establish a new uHTS assay to enable future discovery of potent and selective inhibitors to regulate this oncogenic complex.
转录主调控因子 MYC 在调节主要细胞程序中发挥着重要作用,是癌症治疗的既定靶点。然而,针对 MYC 进行药物研发具有挑战性。迫切需要新的治疗方法来控制依赖 MYC 的恶性肿瘤。丝裂原活化蛋白激酶激酶 3(MKK3)在不同细胞类型中结合并激活 MYC,破坏 MKK3-MYC 蛋白-蛋白相互作用可能为靶向 MYC 驱动的程序提供新策略。然而,目前还没有可用于探究和控制这一信号通路的扰动原。在这项研究中,我们评估了 MKK3-MYC 复合物的成药性,并发现了第一个调节 MKK3 介导的 MYC 激活的化学工具。我们设计了一个短的 44 个残基的抑制肽,并开发了基于细胞裂解物的时间分辨荧光共振能量转移(TR-FRET)测定法,以发现第一个小分子 MKK3-MYC PPI 抑制剂。我们已经将该测定法进行了优化和微型化,使其适用于超高通量筛选(uHTS)1536 孔板格式。对生物活性化学文库中约 6000 种化合物进行的先导筛选,以及随后的多个二级和正交测定法,揭示了一种喹啉衍生物 SGI-1027 是一种有效的 MKK3-MYC PPI 抑制剂。我们已经表明,SGI-1027 在细胞内外破坏 MKK3-MYC 复合物,并抑制结肠和乳腺癌细胞中的 MYC 转录活性。相比之下,SGI-1027 不会抑制 MKK3 激酶活性,也不会干扰众所周知的 MKK3-p38 和 MYC-MAX 复合物。总之,我们的研究证明了 MKK3-MYC PPI 的成药性,提供了第一个用于探究其生物学功能的化学工具,并建立了一种新的 uHTS 测定法,以促进未来发现能够调节这种致癌复合物的有效且选择性抑制剂。