Suppr超能文献

长效 2-肾上腺素能受体激动剂的膜介导受体进入和结合机制。

Membrane-Facilitated Receptor Access and Binding Mechanisms of Long-Acting 2-Adrenergic Receptor Agonists.

机构信息

Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington.

Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington

出版信息

Mol Pharmacol. 2021 Oct;100(4):406-427. doi: 10.1124/molpharm.121.000285. Epub 2021 Aug 1.

Abstract

The drugs salmeterol, formoterol, and salbutamol constitute the frontline treatment of asthma and other chronic pulmonary diseases. These drugs activate the 2-adrenergic receptors (2-AR), a class A G protein-coupled receptor (GPCR), and differ significantly in their clinical onset and duration of actions. According to the microkinetic model, the long duration of action of salmeterol and formoterol compared with salbutamol were attributed, at least in part, to their high lipophilicity and increased local concentrations in the membrane near the receptor. However, the structural and molecular bases of how the lipophilic drugs reach the binding site of the receptor from the surrounding membrane remain unknown. Using a variety of classic and enhanced molecular dynamics simulation techniques, we investigated the membrane partitioning characteristics, binding, and unbinding mechanisms of the ligands. The obtained results offer remarkable insight into the functional role of membrane lipids in the ligand association process. Strikingly, salmeterol entered the binding site from the bilayer through transmembrane helices 1 and 7. The entry was preceded by membrane-facilitated rearrangement and presentation of its phenyl-alkoxy-alkyl tail as a passkey to an access route gated by F193, a residue known to be critical for salmeterol's affinity. Formoterol's access is through the aqueous path shared by other 2-AR agents. We observed a novel secondary path for salbutamol that is distinct from its primary route. Our study offers a mechanistic description for the membrane-facilitated access and binding of ligands to a membrane protein and establishes a groundwork for recognizing membrane lipids as an integral component in the molecular recognition process. SIGNIFICANCE STATEMENT: The cell membrane's functional role behind the duration of action of long-acting β2-adrenergic receptor (β2-AR) agonists such as salmeterol has been a subject of debate for a long time. This study investigated the binding and unbinding mechanisms of the three commonly used β2-AR agonists, salmeterol, formoterol, and salbutamol, using advanced simulation techniques. The obtained results offer unprecedented insights into the active role of membrane lipids in facilitating access and binding of the ligands, affecting the molecular recognition process and thus their pharmacology.

摘要

沙美特罗、福莫特罗和沙丁胺醇这三种药物构成了哮喘和其他慢性肺部疾病的一线治疗药物。这些药物激活了 2-肾上腺素能受体(2-AR),即 A 类 G 蛋白偶联受体(GPCR),它们在临床发作和作用持续时间上有显著差异。根据微观动力学模型,与沙丁胺醇相比,沙美特罗和福莫特罗作用持续时间长,至少部分原因是它们具有较高的亲脂性和在靠近受体的膜内局部浓度增加。然而,亲脂性药物如何从周围膜到达受体结合位点的结构和分子基础仍不清楚。本研究采用多种经典和增强型分子动力学模拟技术,研究了配体的膜分配特性、结合和脱结合机制。所得结果为配体结合过程中膜脂的功能作用提供了深刻的认识。引人注目的是,沙美特罗通过跨膜螺旋 1 和 7 从双层进入结合位点。在此之前,其苯烷氧基-烷基尾部通过膜介导的重排和呈现作为由 F193 门控的进入途径的关键通行证,F193 是已知对沙美特罗亲和力至关重要的残基。福莫特罗的进入途径是通过其他 2-AR 药物共享的水性途径。我们观察到沙布特罗的一种新的次要途径,与它的主要途径不同。我们的研究为配体与膜蛋白的膜介导进入和结合提供了一种机制描述,并为将膜脂识别为分子识别过程中的一个组成部分奠定了基础。

意义表述

长效β2-肾上腺素能受体(β2-AR)激动剂(如沙美特罗)作用持续时间背后的细胞膜功能作用一直是一个长期争论的话题。本研究采用先进的模拟技术,研究了三种常用的β2-AR 激动剂沙美特罗、福莫特罗和沙丁胺醇的结合和解离机制。所得结果为膜脂在促进配体进入和结合、影响分子识别过程从而影响其药理学方面的积极作用提供了前所未有的深入了解。

相似文献

1
Membrane-Facilitated Receptor Access and Binding Mechanisms of Long-Acting 2-Adrenergic Receptor Agonists.
Mol Pharmacol. 2021 Oct;100(4):406-427. doi: 10.1124/molpharm.121.000285. Epub 2021 Aug 1.
2
Salmeterol's extreme β2 selectivity is due to residues in both extracellular loops and transmembrane domains.
Mol Pharmacol. 2015 Jan;87(1):103-20. doi: 10.1124/mol.114.095364. Epub 2014 Oct 16.
3
Pharmacological similarities and differences between beta2-agonists.
Respir Med. 2001 Aug;95 Suppl B:S7-11. doi: 10.1053/rmed.2001.1139.
4
Beta-2 Adrenergic Agonists Are Substrates and Inhibitors of Human Organic Cation Transporter 1.
Mol Pharm. 2015 Aug 3;12(8):2633-41. doi: 10.1021/mp500854e. Epub 2015 Mar 18.
7
In vitro pharmacological characterization of vilanterol, a novel long-acting β2-adrenoceptor agonist with 24-hour duration of action.
J Pharmacol Exp Ther. 2013 Jan;344(1):218-30. doi: 10.1124/jpet.112.198481. Epub 2012 Nov 6.
8
Identifying ligand binding conformations of the β2-adrenergic receptor by using its agonists as computational probes.
PLoS One. 2012;7(12):e50186. doi: 10.1371/journal.pone.0050186. Epub 2012 Dec 31.
9
Interactions between β2-Adrenoceptor Ligands and Membrane: Atomic-Level Insights from Magic-Angle Spinning NMR.
J Med Chem. 2017 Aug 24;60(16):6867-6879. doi: 10.1021/acs.jmedchem.7b00205. Epub 2017 Aug 4.
10
Structural insights into binding specificity, efficacy and bias of a βAR partial agonist.
Nat Chem Biol. 2018 Nov;14(11):1059-1066. doi: 10.1038/s41589-018-0145-x. Epub 2018 Oct 16.

引用本文的文献

2
Molecular basis for the recognition of 24-(S)-hydroxycholesterol by integrin αvβ3.
Sci Rep. 2023 Jun 6;13(1):9166. doi: 10.1038/s41598-023-36040-4.
3
Allosteric modulation of α1β3γ2 GABA receptors by farnesol through the neurosteroid sites.
Biophys J. 2023 Mar 7;122(5):849-867. doi: 10.1016/j.bpj.2023.01.032. Epub 2023 Jan 31.
4
Characterization of a novel positive allosteric modulator of the α-Adrenergic receptor.
Curr Res Pharmacol Drug Discov. 2022 Dec 2;4:100142. doi: 10.1016/j.crphar.2022.100142. eCollection 2023.

本文引用的文献

1
Ligand binding at the protein-lipid interface: strategic considerations for drug design.
Nat Rev Drug Discov. 2021 Sep;20(9):710-722. doi: 10.1038/s41573-021-00240-2. Epub 2021 Jul 13.
2
Ligand recognition and allosteric regulation of DRD1-Gs signaling complexes.
Cell. 2021 Feb 18;184(4):943-956.e18. doi: 10.1016/j.cell.2021.01.028. Epub 2021 Feb 10.
3
Ligand binding free-energy calculations with funnel metadynamics.
Nat Protoc. 2020 Sep;15(9):2837-2866. doi: 10.1038/s41596-020-0342-4. Epub 2020 Aug 19.
4
Structural insights into probe-dependent positive allosterism of the GLP-1 receptor.
Nat Chem Biol. 2020 Oct;16(10):1105-1110. doi: 10.1038/s41589-020-0589-7. Epub 2020 Jul 20.
5
Single-particle cryo-EM structural studies of the βAR-Gs complex bound with a full agonist formoterol.
Cell Discov. 2020 Jul 7;6:45. doi: 10.1038/s41421-020-0176-9. eCollection 2020.
6
Molecular basis of β-arrestin coupling to formoterol-bound β-adrenoceptor.
Nature. 2020 Jul;583(7818):862-866. doi: 10.1038/s41586-020-2419-1. Epub 2020 Jun 17.
8
Structure of an allosteric modulator bound to the CB1 cannabinoid receptor.
Nat Chem Biol. 2019 Dec;15(12):1199-1205. doi: 10.1038/s41589-019-0387-2. Epub 2019 Oct 28.
10
CHARMM-GUI Membrane Builder for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans.
J Chem Theory Comput. 2019 Jan 8;15(1):775-786. doi: 10.1021/acs.jctc.8b01066. Epub 2018 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验