Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States.
Mol Pharm. 2020 Jun 1;17(6):2155-2164. doi: 10.1021/acs.molpharmaceut.0c00299. Epub 2020 May 19.
Resolvins D1 and D2 (RvDs) are structural isomers and metabolites of docosahexaenoic acid, an omega-3 fatty acid, enzymatically produced in our body in response to acute inflammation or microbial invasion. Resolvins have been shown to play an essential role in the resolution of inflammation, tissue repair, and return to homeostasis and thus are actively pursued as potential therapeutics in treating inflammatory disorders and infectious diseases. However, effective delivery of RvDs continues to be a challenging task. Recent studies demonstrated that RvD1 or RvD2 loaded in cell membrane-derived nanovesicles significantly increased therapeutic efficacy in treating murine peritonitis and ischemic stroke, respectively. The mechanistic details of how the subtle structural difference between RvD1 and RvD2 alters their molecular interactions with the membrane lipids of the nanovesicles and thus affects the loading efficiency remain unknown. Here, we report the encapsulation profiles of the neutral and ionized species of both RvD1 and RvD2 determined with the cell membrane-derived nanovesicles at pH values 5.4 and 7.4, respectively. Also, we performed microsecond time-scale all-atom molecular dynamics (MD) simulations in explicit water to elucidate the molecular interactions of both neutral and ionized species of RvD1 and RvD2 with the lipid bilayer using a model membrane system, containing 1,2-dimyristoyl--glycero-3-phosphocholine (DMPC) and cholesterol. We found that the differences in the position and chirality of hydroxyl groups in RvD1 and RvD2 affected their location, orientation, and conformations within the bilayer. Surprisingly, the deprotonation of their carboxyl group caused their orientation and conformation to change from a fully extended one that is oriented in parallel to the membrane plane to a J-shaped bent conformation that is oriented perpendicular to the bilayer plane. Our studies offer valuable insight into the molecular interactions of RvD1/D2 with the lipid bilayer in atomistic details and provide a mechanistic explanation for the observed differences in the encapsulation profiles of RvD1 and RvD2, which may facilitate the rational design of nanovesicle-based therapeutics for treating inflammatory diseases.
解析素 D1 和 D2(RvD)是二十二碳六烯酸(一种 ω-3 脂肪酸)的结构异构体和代谢产物,在我们的身体中,它们可以在急性炎症或微生物入侵时,通过酶促反应产生。解析素有在炎症消退、组织修复和恢复体内平衡中发挥重要作用,因此被积极探索作为治疗炎症性疾病和感染性疾病的潜在疗法。然而,有效递送至体内仍然是一个具有挑战性的任务。最近的研究表明,负载 RvD1 或 RvD2 的细胞膜衍生纳米囊泡分别显著提高了治疗小鼠腹膜炎和缺血性中风的疗效。解析素 D1 和 D2 之间细微结构差异如何改变它们与纳米囊泡的膜脂的分子相互作用,从而影响负载效率的机制细节尚不清楚。在这里,我们报告了在 pH 值分别为 5.4 和 7.4 时,细胞膜衍生纳米囊泡对 RvD1 和 RvD2 的中性和离子化物种的包封特性。此外,我们使用含有 1,2-二肉豆蔻酰基-sn-甘油-3-磷酸胆碱(DMPC)和胆固醇的模型膜系统,进行了微秒时间尺度的全原子分子动力学(MD)模拟,阐明了 RvD1 和 RvD2 的中性和离子化物种与脂质双层的分子相互作用。我们发现,RvD1 和 RvD2 中羟基的位置和手性的差异影响了它们在双层内的位置、取向和构象。令人惊讶的是,其羧基的去质子化导致它们的取向和构象从与膜平面平行的完全伸展状态转变为与双层平面垂直的 J 形弯曲构象。我们的研究提供了关于 RvD1/D2 与脂质双层在原子细节层面的分子相互作用的有价值的见解,并为观察到的 RvD1 和 RvD2 包封特性的差异提供了一种机制解释,这可能有助于基于纳米囊泡的治疗炎症性疾病的合理设计。