The Cardiology Division, Imizu Municipal Hospital.
Toyama Nishi General Hospital.
Circ J. 2021 Dec 24;86(1):37-46. doi: 10.1253/circj.CJ-21-0131. Epub 2021 Jul 30.
The heterogeneity of B-type natriuretic peptide (BNP) levels among individuals with heart failure and preserved ejection fraction (HFpEF) makes predicting the development of cardiac events difficult. This study aimed at creating high-performance Naive Bayes (NB) classifiers, beyond BNP, to predict the development of cardiac events over a 3-year period in individual outpatients with HFpEF.
We retrospectively enrolled 234 outpatients with HFpEF who were followed up for 3 years. Parameters with a coefficient of association ≥0.1 for cardiac events were applied as features of classifiers. We used the step forward method to find a high-performance model with the maximum area under the receiver operating characteristics curve (AUC). A 10-fold cross-validation method was used to validate the generalization performance of the classifiers. The mean kappa statistics, AUC, sensitivity, specificity, and accuracy were evaluated and compared between classifiers learning multiple factors and only the BNP. Kappa statistics, AUC, and sensitivity were significantly higher for NB classifiers learning 13 features than for those learning only BNP (0.69±0.14 vs. 0.54±0.12 P=0.024, 0.94±0.03 vs. 0.84±0.05 P<0.001, 85±8% vs. 64±20% P=0.006, respectively). The specificity and accuracy were similar.
We created high-performance NB classifiers for predicting the development of cardiac events in individual outpatients with HFpEF. Our NB classifiers may be useful for providing precision medicine for these patients.
心力衰竭伴射血分数保留(HFpEF)患者的 B 型利钠肽(BNP)水平存在异质性,因此难以预测心脏事件的发生。本研究旨在构建高性能朴素贝叶斯(NB)分类器,以预测 HFpEF 个体门诊患者在 3 年内发生心脏事件的情况。
我们回顾性纳入了 234 例 HFpEF 门诊患者,随访 3 年。将与心脏事件相关系数≥0.1 的参数作为分类器的特征。我们采用逐步向前法找到具有最大接收者操作特征曲线(ROC)下面积(AUC)的高性能模型。采用 10 折交叉验证法验证分类器的泛化性能。评估和比较了学习多种因素和仅学习 BNP 的分类器的平均 Kappa 统计量、AUC、敏感性、特异性和准确性。与仅学习 BNP 的 NB 分类器相比,学习 13 个特征的 NB 分类器的 Kappa 统计量、AUC 和敏感性显著更高(0.69±0.14 比 0.54±0.12,P=0.024;0.94±0.03 比 0.84±0.05,P<0.001;85±8% 比 64±20%,P=0.006)。特异性和准确性相似。
我们构建了预测 HFpEF 个体门诊患者心脏事件发展的高性能 NB 分类器。我们的 NB 分类器可能有助于为这些患者提供精准医疗。