Suppr超能文献

结合基于传感器的颗粒物(PM)和黑碳测量与建模来评估室内气溶胶暴露情况。

Combining sensor-based measurement and modeling of PM and black carbon in assessing exposure to indoor aerosols.

作者信息

Cox Jennie, Cho Seung-Hyun, Ryan Patrick, Isiugo Kelechi, Ross James, Chillrud Steven, Zhu Zheng, Jandarov Roman, Grinshpun Sergey A, Reponen Tiina

机构信息

Department of Environmental Health, University of Cincinnati, P.O. Box 670056, Cincinnati, OH.

RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC.

出版信息

Aerosol Sci Technol. 2019;53(7):817-829. doi: 10.1080/02786826.2019.1608353. Epub 2019 May 6.

Abstract

Accurate, cost-effective methods are needed for rapid assessment of traffic-related air pollution (TRAP). Typically, real-time data of particulate matter (PM) from portable sensors have been adjusted using data from reference methods such as gravimetric measurement to improve accuracy. The objective of this study was to create a correction factor or linear regression model for the real-time measurements of the RTI's Micro Personal Exposure Monitor (MicroPEM) and AethLab's microAeth® black carbon (AE51) sensor to generate accurate real-time data for PM (PM) and black carbon (BC) in Cincinnati metropolitan homes. The two sensors and an SKC PM Personal Modular impactor were collocated in 44 indoor sampling events for 2 days in residences near major roadways. The reference filter-based analyses conducted by a laboratory included particle mass (SKC PM and MicroPEM PM) and black carbon (SKC BC); these methods are more accurate than real-time sensors but are also more cumbersome and costly. For PM, the average correction factor, a ratio of gravimetric to real-time, for the MicroPEM PM and SKC PM utilizing the PM and was 0.94 and 0.83, respectively, with a coefficient of variation (CV) of 84% and 52%, respectively; the corresponding linear regression model had a CV of 54% and 25%. For BC, the average correction factor utilizing the BC and SKC BC was 0.74 with a CV of 36% with the associated linear regression model producing a CV of 56%. The results from this study will help ensure that the real-time exposure monitors are capable of detecting an estimated PM after an appropriate statistical model is applied.

摘要

需要准确且经济高效的方法来快速评估交通相关空气污染(TRAP)。通常,便携式传感器获取的颗粒物(PM)实时数据会根据重量法等参考方法的数据进行调整,以提高准确性。本研究的目的是为RTI的微型个人暴露监测仪(MicroPEM)和AethLab的微型黑碳仪(microAeth®,AE51)传感器的实时测量创建校正因子或线性回归模型,以便为辛辛那提大都市家庭中的PM(颗粒物)和黑碳(BC)生成准确的实时数据。在靠近主要道路的住宅中,将这两种传感器与一个SKC PM个人模块化冲击器在44次室内采样活动中并置了2天。实验室基于参考滤膜的分析包括颗粒质量(SKC PM和MicroPEM PM)和黑碳(SKC BC);这些方法比实时传感器更准确,但也更繁琐且成本更高。对于PM,利用PM的MicroPEM PM和SKC PM的平均校正因子(重量法与实时法的比率)分别为0.94和0.83,变异系数(CV)分别为84%和52%;相应的线性回归模型的CV分别为54%和25%。对于BC,利用BC和SKC BC的平均校正因子为0.74,CV为36%,相关的线性回归模型的CV为56%。本研究的结果将有助于确保在应用适当的统计模型后,实时暴露监测仪能够检测到估计的PM。

相似文献

1
Combining sensor-based measurement and modeling of PM and black carbon in assessing exposure to indoor aerosols.
Aerosol Sci Technol. 2019;53(7):817-829. doi: 10.1080/02786826.2019.1608353. Epub 2019 May 6.
2
Assessment of PM monitoring using MicroPEM: A validation study in a city with elevated PM levels.
Ecotoxicol Environ Saf. 2019 Apr 30;171:518-522. doi: 10.1016/j.ecoenv.2019.01.002. Epub 2019 Jan 11.
3
Comparison of real-time instruments and gravimetric method when measuring particulate matter in a residential building.
J Air Waste Manag Assoc. 2016 Nov;66(11):1109-1120. doi: 10.1080/10962247.2016.1201022.
5
Design and evaluation of a portable PM monitor featuring a low-cost sensor in line with an active filter sampler.
Environ Sci Process Impacts. 2019 Aug 14;21(8):1403-1415. doi: 10.1039/c9em00234k.
6
Development of an approach to correcting MicroPEM baseline drift.
Environ Res. 2018 Jul;164:39-44. doi: 10.1016/j.envres.2018.01.045. Epub 2018 Feb 22.
7
A comparative study of human exposures to household air pollution from commonly used cookstoves in Sri Lanka.
Indoor Air. 2017 Jan;27(1):147-159. doi: 10.1111/ina.12281. Epub 2016 Feb 17.
8
An accurate filter loading correction is essential for assessing personal exposure to black carbon using an Aethalometer.
J Expo Sci Environ Epidemiol. 2017 Jul;27(4):409-416. doi: 10.1038/jes.2016.71. Epub 2016 Dec 21.
9
A land use regression model using machine learning and locally developed low cost particulate matter sensors in Uganda.
Environ Res. 2021 Aug;199:111352. doi: 10.1016/j.envres.2021.111352. Epub 2021 May 24.
10
Estimation of personal PM and BC exposure by a modeling approach - Results of a panel study in Shanghai, China.
Environ Int. 2018 Sep;118:194-202. doi: 10.1016/j.envint.2018.05.050. Epub 2018 Jun 6.

引用本文的文献

1
Comparing PM, respirable dust, and total dust fractions using real-time and gravimetric samples in an exposure chamber study.
Heliyon. 2023 May 23;9(6):e16127. doi: 10.1016/j.heliyon.2023.e16127. eCollection 2023 Jun.
2
Exposure to Air Pollution in Rural Malawi: Impact of Cooking Methods on Blood Pressure and Peak Expiratory Flow.
Int J Environ Res Public Health. 2021 Jul 20;18(14):7680. doi: 10.3390/ijerph18147680.

本文引用的文献

1
Comparison of PM Exposure in Hazy and Non-Hazy Days in Nanjing, China.
Aerosol Air Qual Res. 2017 Sep;17(9):2235-2246. doi: 10.4209/aaqr.2016.07.0301.
2
Effectiveness of a portable air cleaner in removing aerosol particles in homes close to highways.
Indoor Air. 2018 Nov;28(6):818-827. doi: 10.1111/ina.12502. Epub 2018 Sep 17.
4
An accurate filter loading correction is essential for assessing personal exposure to black carbon using an Aethalometer.
J Expo Sci Environ Epidemiol. 2017 Jul;27(4):409-416. doi: 10.1038/jes.2016.71. Epub 2016 Dec 21.
5
Applications of GPS-tracked personal and fixed-location PM(2.5) continuous exposure monitoring.
J Air Waste Manag Assoc. 2016 Jan;66(1):53-65. doi: 10.1080/10962247.2015.1108942.
6
Indoor air sampling for fine particulate matter and black carbon in industrial communities in Pittsburgh.
Sci Total Environ. 2015 Dec 1;536:108-115. doi: 10.1016/j.scitotenv.2015.06.117. Epub 2015 Jul 21.
7
Mold contamination in schools with either high or low prevelance of asthma.
Pediatr Allergy Immunol. 2015 Feb;26(1):49-53. doi: 10.1111/pai.12324.
8
Public health and components of particulate matter: the changing assessment of black carbon.
J Air Waste Manag Assoc. 2014 Jun;64(6):620-60. doi: 10.1080/10962247.2014.912692.
9
A Source Apportionment of U.S. Fine Particulate Matter Air Pollution.
Atmos Environ (1994). 2011 Aug;45(24):3924-3936. doi: 10.1016/j.atmosenv.2011.04.070.
10
A comparative study of walking-induced dust resuspension using a consistent test mechanism.
Indoor Air. 2014 Dec;24(6):592-603. doi: 10.1111/ina.12107. Epub 2014 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验