Suppr超能文献

基于 APSO-RBF 神经网络的信号识别,辅助运动员竞技能力评估。

Signal Recognition Based on APSO-RBF Neural Network to Assist Athlete's Competitive Ability Evaluation.

机构信息

Institute of Exercise Epidemiology and Department of Physical Education, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China.

出版信息

Comput Intell Neurosci. 2021 Jul 22;2021:4850020. doi: 10.1155/2021/4850020. eCollection 2021.

Abstract

The advanced analysis and research methods of big data will provide theoretical support for the integration of athletes' talent training. The advanced technological methods of big data will also give full play to the advantages of tapping the potential of talents and actively improve the success rate of grassroots young athletes. This paper proposes an improved Adaptive Particle Swarm Optimization (APSO) algorithm for the optimization of radial basis function (RBF) neural network parameters. The basic structure of RBF neural network is introduced, and the influence of parameters on the performance of RBF neural network is analyzed. The optimization method of RBF neural network parameters is analyzed, and Particle Swarm Optimization (PSO) algorithm is selected as the parameter optimization method of RBF neural network. In addition, an improved APSO algorithm is proposed according to the advantages and disadvantages of PSO and compared with other PSO algorithms. Experimental results show that the improved PSO algorithm has better accuracy. The improved PSO algorithm is applied to the parameter optimization of RBF neural network, and the experimental results prove the superiority of the proposed method. By weighting the second-level indicators, the weights of the second-level indicators of athletes' competitive ability are in order of skill, athletic quality, psychological ability, and artistic expression. Skills are the main factors that determine the level of competitive ability. Sports quality and psychological ability are important guarantees for supporting the normal performance of skills. Artistic expressiveness is a supplementary factor for competitive ability. The various elements cooperate with each other and interact with each other. The indicators do not exist alone but cooperate with each other to support the formation of the entire athletic ability system. In the content of the competitive ability index of excellent athletes, technical ability is the core, and sports quality, psychological ability, and artistic performance ability ultimately exist to serve the improvement of technical ability. The competition scores of the 100 athletes counted in this article are all above 9.0 points. The difference between APSO-RBF's action quality scores of 100 athletes and the real value is less than 3%. In terms of movement difficulty, the APSO-RBF evaluated athletes' scores are close to 1.65 points, which is basically the same as the real value.

摘要

大数据的高级分析和研究方法将为运动员人才培养的融合提供理论支持。大数据的先进技术方法也将充分发挥挖掘人才潜力的优势,积极提高基层青年运动员的成材率。本文提出了一种改进的自适应粒子群优化(APSO)算法,用于优化径向基函数(RBF)神经网络参数。介绍了 RBF 神经网络的基本结构,分析了参数对 RBF 神经网络性能的影响。分析了 RBF 神经网络参数的优化方法,选择粒子群优化(PSO)算法作为 RBF 神经网络的参数优化方法。此外,根据 PSO 的优缺点提出了一种改进的 APSO 算法,并与其他 PSO 算法进行了比较。实验结果表明,改进的 PSO 算法具有更好的准确性。将改进的 PSO 算法应用于 RBF 神经网络的参数优化,实验结果证明了所提方法的优越性。通过对二级指标进行加权,运动员竞技能力的二级指标权重依次为技能、运动素质、心理能力和艺术表现力。技能是决定竞技能力水平的主要因素。运动素质和心理能力是支撑技能正常发挥的重要保障。艺术表现力是竞技能力的补充因素。各要素相互配合,相互作用。各项指标不是孤立存在的,而是相互配合,共同支撑整个竞技能力体系的形成。在优秀运动员竞技能力指标的内容中,技术能力是核心,运动素质、心理能力和艺术表现能力最终都存在,以服务于技术能力的提高。本文统计的 100 名运动员的比赛得分均在 9.0 分以上。APSO-RBF 对 100 名运动员动作质量得分与真实值的差值小于 3%。在动作难度方面,APSO-RBF 对运动员的评分接近 1.65 分,基本与真实值相同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6d3/8324355/642be954657c/CIN2021-4850020.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验