Suppr超能文献

数据挖掘算法在 HIV/AIDS 患者痴呆中的应用。

Application of Data Mining Algorithms for Dementia in People with HIV/AIDS.

机构信息

Graduate Program in Clinical Care in Nursing and Health, State University of Ceará, Fortaleza, Brazil.

Graduate Program in Computer Science, State University of Ceará, Fortaleza, Brazil.

出版信息

Comput Math Methods Med. 2021 Jul 9;2021:4602465. doi: 10.1155/2021/4602465. eCollection 2021.

Abstract

Dementia interferes with the individual's motor, behavioural, and intellectual functions, causing him to be unable to perform instrumental activities of daily living. This study is aimed at identifying the best performing algorithm and the most relevant characteristics to categorise individuals with HIV/AIDS at high risk of dementia from the application of data mining. Principal component analysis (PCA) algorithm was used and tested comparatively between the following machine learning algorithms: logistic regression, decision tree, neural network, KNN, and random forest. The database used for this study was built from the data collection of 270 individuals infected with HIV/AIDS and followed up at the outpatient clinic of a reference hospital for infectious and parasitic diseases in the State of Ceará, Brazil, from January to April 2019. Also, the performance of the algorithms was analysed for the 104 characteristics available in the database; then, with the reduction of dimensionality, there was an improvement in the quality of the machine learning algorithms and identified that during the tests, even losing about 30% of the variation. Besides, when considering only 23 characteristics, the precision of the algorithms was 86% in random forest, 56% logistic regression, 68% decision tree, 60% KNN, and 59% neural network. The random forest algorithm proved to be more effective than the others, obtaining 84% precision and 86% accuracy.

摘要

痴呆症会干扰个体的运动、行为和智力功能,导致其无法进行日常的工具性活动。本研究旨在从数据挖掘的应用中确定性能最佳的算法和最相关的特征,以对 HIV/AIDS 患者发生痴呆的风险进行分类。使用主成分分析(PCA)算法,并在以下机器学习算法之间进行了比较:逻辑回归、决策树、神经网络、KNN 和随机森林。本研究使用的数据库是从巴西塞阿拉州一家传染病参考医院的门诊 270 名感染 HIV/AIDS 的个体的数据收集构建的,时间为 2019 年 1 月至 4 月。此外,还对数据库中 104 个特征的算法性能进行了分析;然后,通过降维,机器学习算法的质量得到了提高,并确定了在测试过程中,即使丢失了大约 30%的变化,也有很好的效果。此外,仅考虑 23 个特征时,随机森林算法的准确率为 86%,逻辑回归为 56%,决策树为 68%,KNN 为 60%,神经网络为 59%。随机森林算法比其他算法更有效,准确率为 84%,准确度为 86%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b387/8286188/0acc8f5b40f6/CMMM2021-4602465.001.jpg

相似文献

1
Application of Data Mining Algorithms for Dementia in People with HIV/AIDS.
Comput Math Methods Med. 2021 Jul 9;2021:4602465. doi: 10.1155/2021/4602465. eCollection 2021.
2
Score and Correlation Coefficient-Based Feature Selection for Predicting Heart Failure Diagnosis by Using Machine Learning Algorithms.
Comput Math Methods Med. 2021 Dec 20;2021:8500314. doi: 10.1155/2021/8500314. eCollection 2021.
3
Comparison of machine learning algorithms for clinical event prediction (risk of coronary heart disease).
J Biomed Inform. 2019 Sep;97:103257. doi: 10.1016/j.jbi.2019.103257. Epub 2019 Jul 30.
4
A hybrid data mining model for diagnosis of patients with clinical suspicion of dementia.
Comput Methods Programs Biomed. 2018 Oct;165:139-149. doi: 10.1016/j.cmpb.2018.08.016. Epub 2018 Aug 24.
5
Machine learning models reveal neurocognitive impairment type and prevalence are associated with distinct variables in HIV/AIDS.
J Neurovirol. 2020 Feb;26(1):41-51. doi: 10.1007/s13365-019-00791-6. Epub 2019 Sep 13.
6
Data mining for sex estimation based on cranial measurements.
Forensic Sci Int. 2020 Oct;315:110441. doi: 10.1016/j.forsciint.2020.110441. Epub 2020 Aug 2.
9
Machine Learning Attempts for Predicting Human Subcutaneous Bioavailability of Monoclonal Antibodies.
Pharm Res. 2021 Mar;38(3):451-460. doi: 10.1007/s11095-021-03022-y. Epub 2021 Mar 12.
10
Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
Artif Intell Med. 2019 Jul;98:59-76. doi: 10.1016/j.artmed.2019.07.008. Epub 2019 Jul 25.

本文引用的文献

2
Timely care linkage of people living with HIV in a reference health service, Belo Horizonte, Minas Gerais.
Rev Bras Epidemiol. 2020 Mar 9;23:e200020. doi: 10.1590/1980-549720200020. eCollection 2020.
4
Non-parametric individual treatment effect estimation for survival data with random forests.
Bioinformatics. 2020 Jan 15;36(2):629-636. doi: 10.1093/bioinformatics/btz602.
5
Principal Components Analysis of Brain Metabolism Predicts Development of Alzheimer Dementia.
J Nucl Med. 2019 Jun;60(6):837-843. doi: 10.2967/jnumed.118.219097. Epub 2018 Nov 2.
6
[Factors associated with low knowledge on HIV/AIDS among men who have sex with men in Brazil].
Cad Saude Publica. 2017 Oct 26;33(10):e00125515. doi: 10.1590/0102-311X00125515.
7
Changing clinical phenotypes of HIV-associated neurocognitive disorders.
J Neurovirol. 2018 Apr;24(2):141-145. doi: 10.1007/s13365-017-0556-6. Epub 2017 Jul 27.
9
Predicting all-cause risk of 30-day hospital readmission using artificial neural networks.
PLoS One. 2017 Jul 14;12(7):e0181173. doi: 10.1371/journal.pone.0181173. eCollection 2017.
10
Predicting the Future - Big Data, Machine Learning, and Clinical Medicine.
N Engl J Med. 2016 Sep 29;375(13):1216-9. doi: 10.1056/NEJMp1606181.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验