Suppr超能文献

用于肽和聚酮天然产物组装的生物合成环化催化剂。

Biosynthetic Cyclization Catalysts for the Assembly of Peptide and Polyketide Natural Products.

作者信息

Adrover-Castellano Maria L, Schmidt Jennifer J, Sherman David H

机构信息

Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216 (USA).

出版信息

ChemCatChem. 2021 May 7;13(9):2095-2116. doi: 10.1002/cctc.202001886. Epub 2021 Jan 28.

Abstract

Many biologically active natural products are synthesized by nonribosomal peptide synthetases (NRPSs), polyketide synthases (PKSs) and their hybrids. These megasynthetases contain modules possessing distinct catalytic domains that allow for substrate initiation, chain extension, processing and termination. At the end of a module, a terminal domain, usually a thioesterase (TE), is responsible for catalyzing the release of the NRPS or PKS as a linear or cyclized product. In this review, we address the general cyclization mechanism of the TE domain, including oligomerization and the fungal C-C bond forming Claisen-like cyclases (CLCs). Additionally, we include examples of cyclization catalysts acting within or at the end of a module. Furthermore, condensation-like (C) domains, terminal reductase (R) domains, reductase-like domains that catalyze Dieckmann condensation (R), thioesterase-like Dieckmann cyclases, -acting TEs from the penicillin binding protein (PBP) enzyme family, product template (PT) domains and others will also be reviewed. The studies summarized here highlight the remarkable diversity of NRPS and PKS cyclization catalysts for the production of biologically relevant, complex cyclic natural products and related compounds.

摘要

许多生物活性天然产物是由非核糖体肽合成酶(NRPS)、聚酮合酶(PKS)及其杂合体合成的。这些大型合成酶包含具有不同催化结构域的模块,这些结构域可实现底物起始、链延伸、加工和终止。在一个模块的末端,一个末端结构域,通常是硫酯酶(TE),负责催化NRPS或PKS以线性或环化产物的形式释放。在本综述中,我们阐述了TE结构域的一般环化机制,包括寡聚化以及真菌中形成C-C键的类似克莱森环化酶(CLC)。此外,我们还列举了在模块内部或末端起作用的环化催化剂的实例。此外,还将综述类似缩合(C)结构域、末端还原酶(R)结构域、催化迪克曼缩合反应的类还原酶结构域(R)、类硫酯酶迪克曼环化酶、来自青霉素结合蛋白(PBP)酶家族的起作用的TE、产物模板(PT)结构域等。此处总结的研究突出了NRPS和PKS环化催化剂在生产具有生物学相关性的复杂环状天然产物及相关化合物方面的显著多样性。

相似文献

1
Biosynthetic Cyclization Catalysts for the Assembly of Peptide and Polyketide Natural Products.
ChemCatChem. 2021 May 7;13(9):2095-2116. doi: 10.1002/cctc.202001886. Epub 2021 Jan 28.
2
Structure and function of an iterative polyketide synthase thioesterase domain catalyzing Claisen cyclization in aflatoxin biosynthesis.
Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6246-51. doi: 10.1073/pnas.0913531107. Epub 2010 Mar 23.
3
Analysis of the enzymatic domains in the modular portion of the coronafacic acid polyketide synthase.
Gene. 2001 May 30;270(1-2):191-200. doi: 10.1016/s0378-1119(01)00476-0.
7
Exploring the impact of different thioesterase domains for the design of hybrid peptide synthetases.
Chem Biol. 2001 Oct;8(10):997-1010. doi: 10.1016/s1074-5521(01)00068-0.
8
Ways of assembling complex natural products on modular nonribosomal peptide synthetases.
Chembiochem. 2002 Jun 3;3(6):490-504. doi: 10.1002/1439-7633(20020603)3:6<490::AID-CBIC490>3.0.CO;2-N.

引用本文的文献

1
Non-canonical thioesterases in bacterial non-ribosomal peptide biosynthesis.
J Antibiot (Tokyo). 2025 Aug 6. doi: 10.1038/s41429-025-00854-3.
4
Directed Evolution of a Modular Polyketide Synthase Thioesterase for Generation of a Hybrid Macrocyclic Ring System.
ACS Catal. 2025 Feb 21;15(4):3405-3417. doi: 10.1021/acscatal.4c07922. Epub 2025 Feb 11.
5
Characterization of RufT Thioesterase Domain Reveals Insights into Rufomycin Cyclization and the Biosynthetic Origin of Rufomyazine.
ACS Chem Biol. 2025 Mar 21;20(3):573-580. doi: 10.1021/acschembio.4c00802. Epub 2025 Mar 6.
6
Xenosiderophores: bridging the gap in microbial iron acquisition strategies.
World J Microbiol Biotechnol. 2025 Feb 13;41(2):69. doi: 10.1007/s11274-025-04287-w.
7
Enzymatic peptide macrocyclization indole--acylation.
Chem Sci. 2025 Jan 28;16(9):3872-3877. doi: 10.1039/d4sc07839j. eCollection 2025 Feb 26.
8
Rethinking natural product discovery to unblock the antibiotic pipeline.
Future Microbiol. 2025 Feb;20(3):179-182. doi: 10.1080/17460913.2025.2449779. Epub 2025 Jan 16.
9
Macrocyclizing-thioesterases in bacterial non-ribosomal peptide biosynthesis.
J Nat Med. 2025 Jan;79(1):1-14. doi: 10.1007/s11418-024-01841-y. Epub 2024 Aug 30.
10
Exploring the substrate stereoselectivity and catalytic mechanism of nonribosomal peptide macrocyclization in surugamides biosynthesis.
iScience. 2024 Jan 11;27(2):108876. doi: 10.1016/j.isci.2024.108876. eCollection 2024 Feb 16.

本文引用的文献

1
Structural Basis for Enzymatic Off-Loading of Hybrid Polyketides by Dieckmann Condensation.
ACS Chem Biol. 2020 Oct 16;15(10):2783-2791. doi: 10.1021/acschembio.0c00579. Epub 2020 Oct 5.
2
Thioesterase from Cereulide Biosynthesis Is Responsible for Oligomerization and Macrocyclization of a Linear Tetradepsipeptide.
J Nat Prod. 2020 Jun 26;83(6):1990-1997. doi: 10.1021/acs.jnatprod.0c00333. Epub 2020 Jun 10.
3
Repurposing Modular Polyketide Synthases and Non-ribosomal Peptide Synthetases for Novel Chemical Biosynthesis.
Front Mol Biosci. 2020 May 15;7:87. doi: 10.3389/fmolb.2020.00087. eCollection 2020.
4
Pyrrolocin C and equisetin inhibit bacterial acetyl-CoA carboxylase.
PLoS One. 2020 May 29;15(5):e0233485. doi: 10.1371/journal.pone.0233485. eCollection 2020.
5
Probing Selectivity and Creating Structural Diversity Through Hybrid Polyketide Synthases.
Angew Chem Int Ed Engl. 2020 Aug 3;59(32):13575-13580. doi: 10.1002/anie.202004991. Epub 2020 Jun 5.
7
A Versatile Chemoenzymatic Synthesis for the Discovery of Potent Cryptophycin Analogs.
ACS Chem Biol. 2020 Feb 21;15(2):524-532. doi: 10.1021/acschembio.9b00998. Epub 2020 Feb 3.
8
Reductase of Mutanobactin Synthetase Triggers Sequential C-C Macrocyclization, C-S Bond Formation, and C-C Bond Cleavage.
Org Lett. 2020 Feb 7;22(3):960-964. doi: 10.1021/acs.orglett.9b04501. Epub 2020 Jan 9.
9
Nanangenines: drimane sesquiterpenoids as the dominant metabolite cohort of a novel Australian fungus, .
Beilstein J Org Chem. 2019 Nov 5;15:2631-2643. doi: 10.3762/bjoc.15.256. eCollection 2019.
10
Efficient nonenzymatic cyclization and domain shuffling drive pyrrolopyrazine diversity from truncated variants of a fungal NRPS.
Proc Natl Acad Sci U S A. 2019 Dec 17;116(51):25614-25623. doi: 10.1073/pnas.1913080116. Epub 2019 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验