Kennedy C Rose, Joannou Matthew V, Steves Janelle E, Hoyt Jordan M, Kovel Carli B, Chirik Paul J
Department of Chemistry, Princeton University, Princeton, NJ 08544.
ACS Catal. 2021 Feb 5;11(3):1368-1379. doi: 10.1021/acscatal.0c04608. Epub 2021 Jan 13.
The selective, intermolecular, homodimerization and cross-cycloaddition of vinylsilanes with unbiased 1,3-dienes, catalyzed by a pyridine-2,6-diimine (PDI) iron complex is described. In the absence of a diene coupling partner, vinylsilane hydroalkenylation products were obtained chemoselectively with unusual regioselectivity (up to >98% purity, 98:2 ). In the presence of a 4- or 2-substituted diene coupling partner, under otherwise identical reaction conditions, formation of value-added [2+2]- and [4+2]-cycloadducts, respectively, was observed. The chemoselectivity profile was distinct from that observed for analogous α-olefin dimerization and cross-reactions with 1,3-dienes. Mechanistic studies conducted with well-defined, single-component precatalysts (PDI)Fe(L) (where PDI = 2,6-(2,6-Me-CHN═CMe)CHN; L = butadiene or 2(N)) provided insights into the kinetic and thermodynamic factors contributing to the substrate-controlled regioselectivity for both the homodimerization and cross cycloadditions. Diamagnetic iron diene and paramagnetic iron olefin complexes were identified as catalyst resting states, were characterized by in situ NMR and Mössbauer spectroscopic studies, and were corroborated with DFT calculations. Stoichiometric reactions and computational models provided evidence for a common mechanistic regime where competing steric and orbital-symmetry requirements dictate the regioselectivity of oxidative cyclization. Although distinct chemoselectivity profiles were observed in cross-cycloadditions with the vinylsilane congeners of α-olefins, these products arose from metallacycles with the same connectivity. The silyl substituents ultimately governed the relative rates of β-H elimination and C-C reductive elimination to dictate final product formation.
本文描述了吡啶 - 2,6 - 二亚胺(PDI)铁配合物催化的乙烯基硅烷与未修饰的1,3 - 二烯的选择性、分子间、同二聚化和交叉环加成反应。在没有二烯偶联伙伴的情况下,以不寻常的区域选择性(纯度高达>98%,98:2)化学选择性地获得了乙烯基硅烷氢烯基化产物。在4 - 或2 - 取代的二烯偶联伙伴存在下,在其他相同的反应条件下,分别观察到了增值[2 + 2] - 和[4 + 2] - 环加合物的形成。这种化学选择性分布与类似的α - 烯烃二聚化以及与1,3 - 二烯的交叉反应所观察到的不同。使用定义明确的单组分预催化剂(PDI)Fe(L)(其中PDI = 2,6 - (2,6 - Me - CHN═CMe)CHN;L = 丁二烯或2(N))进行的机理研究,为同二聚化和交叉环加成中底物控制的区域选择性的动力学和热力学因素提供了见解。抗磁性铁二烯和顺磁性铁烯烃配合物被确定为催化剂静止状态,通过原位NMR和穆斯堡尔光谱研究进行了表征,并通过DFT计算得到了证实。化学计量反应和计算模型为一种常见的机理机制提供了证据,即竞争的空间和轨道对称要求决定了氧化环化的区域选择性。尽管在与α - 烯烃的乙烯基硅烷同系物的交叉环加成中观察到了不同的化学选择性分布,但这些产物来自具有相同连接性的金属环。硅烷基取代基最终控制了β - H消除和C - C还原消除的相对速率,从而决定了最终产物的形成。