Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.
ExxonMobil Chemical Company, Baytown, Texas 77520, United States.
J Am Chem Soc. 2021 Oct 27;143(42):17793-17805. doi: 10.1021/jacs.1c08912. Epub 2021 Oct 15.
Aryl-substituted pyridine(diimine) iron complexes promote the catalytic [2 + 2] cycloadditions of alkenes and dienes to form vinylcyclobutanes as well as the oligomerization of butadiene to generate divinyl(oligocyclobutane), a microstructure of poly(butadiene) that is chemically recyclable. A systematic study on a series of iron butadiene complexes as well as their ruthenium congeners has provided insights into the essential features of the catalyst that promotes these cycloaddition reactions. Structural and computational studies on iron butadiene complexes identified that the structural rigidity of the tridentate pincer enables rare s-trans diene coordination. This geometry, in turn, promotes dissociation of one of the alkene arms of the diene, opening a coordination site for the incoming substrate to engage in oxidative cyclization. Studies on ruthenium congeners established that this step occurs without redox involvement of the pyridine(diimine) chelate. Cyclobutane formation occurs from a metallacyclic intermediate by reversible C(sp)-C(sp) reductive coupling. A series of labeling experiments with pyridine(diimine) iron and ruthenium complexes support the favorability of accessing the +3 oxidation state to trigger C(sp)-C(sp) reductive elimination, involving spin crossover from = 0 to = 1. The high density of states of iron and the redox-active pyridine(diimine) ligand facilitate this reactivity under thermal conditions. For the ruthenium congener, the pyridine(diimine) remains redox innocent and irradiation with blue light was required to promote the analogous reactivity. These structure-activity relationships highlight important design principles for the development of next generation catalysts for these cycloaddition reactions as well as the promotion of chemical recycling of cycloaddition polymers.
芳基取代的吡啶(二亚胺)铁配合物促进烯烃和二烯的催化[2+2]环加成反应,形成乙烯基环丁烷,以及丁二烯的齐聚反应,生成二乙烯基(齐聚环丁烷),这是一种可化学回收的聚丁二烯的微观结构。对一系列铁丁二烯配合物及其钌同系物的系统研究提供了对促进这些环加成反应的催化剂的基本特征的深入了解。对铁丁二烯配合物的结构和计算研究表明,三齿齿合配体的结构刚性使罕见的 s-顺式二烯配位成为可能。这种几何形状反过来促进了二烯的一个烯臂的解离,为进入的底物打开了一个配位位置,使其参与氧化环化。对钌同系物的研究确定,这一步骤不涉及吡啶(二亚胺)螯合物的氧化还原参与。环丁烷的形成是通过可逆的 C(sp)-C(sp)还原偶联从金属环合物中间体发生的。一系列带有吡啶(二亚胺)铁和钌配合物的标记实验支持了通过进入+3 氧化态来触发 C(sp)-C(sp)还原消除的有利性,涉及从 = 0 到 = 1 的自旋交叉。铁的高态密度和氧化还原活性的吡啶(二亚胺)配体在热条件下促进了这种反应性。对于钌同系物,吡啶(二亚胺)保持氧化还原惰性,需要用蓝光照射才能促进类似的反应性。这些结构-活性关系突出了开发这些环加成反应的下一代催化剂以及促进环加成聚合物的化学回收的重要设计原则。