Kumaravel Sangeetha, Subramanian Mohanapriya, Karthick Kannimuthu, Sakthivel Arunkumar, Kundu Subrata, Alwarappan Subbiah
CSIR-Central Electrochemical Research Institute, Karaikudi, Tamilnadu 630003, India.
Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India.
ACS Omega. 2021 Jul 13;6(29):19162-19169. doi: 10.1021/acsomega.1c02515. eCollection 2021 Jul 27.
Direct methanol fuel cell technology implementation mainly depends on the development of non-platinum catalysts with good CO tolerance. Among the widely studied transition-metal catalysts, cobalt oxide with distinctively higher catalytic efficiency is highly desirable. Here, we have evolved a simple method of synthesizing cobalt tungsten oxide hydroxide hydrate nanowires with DNA (CTOOH/DNA) and without incorporating DNA (CTOOH) by microwave irradiation and subsequently employed them as electrocatalysts for methanol oxidation. Following this, we examined the influence of incorporating DNA into CTOOH by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. The enhanced electrochemical surface area of CTOOH offered readily available electroactive sites and resulted in a higher oxidation current at a lower onset potential for methanol oxidation. On the other hand, CTOOH/DNA exhibited improved CO tolerance and it was evident from the chronoamperometric studies. Herein, we noticed only a 2.5 and 1.8% drop at CTOOH- and CTOOH/DNA-modified electrodes, respectively, after 30 min. Overall, from the results, it was evident that the presence of DNA in CTOOH played an important role in the rapid removal of adsorbed intermediates and regenerated active catalyst centers possibly by creating high density surface defects around the nanochains than bare CTOOH.
直接甲醇燃料电池技术的实施主要取决于具有良好一氧化碳耐受性的非铂催化剂的开发。在广泛研究的过渡金属催化剂中,具有显著更高催化效率的氧化钴是非常理想的。在此,我们开发了一种通过微波辐射合成含DNA的氢氧化钴钨酸水合物纳米线(CTOOH/DNA)和不含DNA的(CTOOH)的简单方法,随后将它们用作甲醇氧化的电催化剂。在此之后,我们通过循环伏安法、计时电流法和电化学阻抗谱研究了将DNA掺入CTOOH的影响。CTOOH电化学表面积的增加提供了易于利用的电活性位点,并导致在较低起始电位下甲醇氧化的氧化电流更高。另一方面,CTOOH/DNA表现出更好的一氧化碳耐受性,这从计时电流法研究中很明显。在此,我们注意到在30分钟后,CTOOH修饰电极和CTOOH/DNA修饰电极分别仅下降了2.5%和1.8%。总体而言,从结果来看,很明显CTOOH中DNA的存在通过在纳米链周围产生比裸露的CTOOH更高密度的表面缺陷,在快速去除吸附中间体和再生活性催化剂中心方面发挥了重要作用。