Matsueda Makoto, Yanagisawa Kayo, Koarai Kazuma, Terashima Motoki, Fujiwara Kenso, Abe Hironobu, Kitamura Akihiro, Takagai Yoshitaka
Faculty of Symbiotic Systems Science, Cluster of Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan.
Collaborative Laboratories for Advanced Decommissioning Science, Japan Atomic Energy Agency, 10-2 Fukasaku, Miharu-machi, Tamura-gun, Fukushima 963-7700, Japan.
ACS Omega. 2021 Jul 16;6(29):19281-19290. doi: 10.1021/acsomega.1c02756. eCollection 2021 Jul 27.
Quantification of pg/L levels (i.e., 0.6 mBq/L) of radioactive technetium-99 (Tc) was achieved within 15 min in the presence of isobaric and polyatomic interference sources such as ruthenium-99 (Ru) and molybdenum hydride (MoH) at 3-11 orders of magnitude higher concentrations. Online solid-phase extraction-inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS) with oxygen (O) dynamic reaction cell (online SPE-ICP-MS-DRC) was shown to be a thorough automatic analytical system, circumventing the need for human handling. At three stepwise separations (SPE-DRC-Q mass filters), we showed that interference materials allowed the coexistence of abundance ratios of 1.5 × 10 and 1.1 × 10 for Tc/Mo and Tc/Ru, respectively. A classical mathematical correction using the natural isotope ratio of Ru/Ru was used to calculate the residues of Ru. Using this optimized system, a detection limit (DL; 3σ) of Tc was 9.3 pg/L (= 5.9 mBq/L) for a 50 mL injection and sequential measurements were undertaken at a cycle of 24 min/sample. For the measurement of a lower concentration of Tc, an AG1-X8 anion-exchange column was used to study 20 L of seawater. Its DL was approximately 1000 times greater than that of previous methods (70.0 fg/L). Thus, this method withstands coexistences of 5.8 × 10 and 3.5 × 10 for Tc/Mo and Tc/Ru, respectively. Spike and recovery tests were conducted for environmental samples; the resulting values showed good agreement with the spike applied.
在存在诸如钌 - 99(Ru)和氢化钼(MoH)等浓度比放射性锝 - 99(Tc)高3至11个数量级的同量异位素和多原子干扰源的情况下,15分钟内实现了对每升皮克(pg/L)水平(即0.6毫贝克勒尔/升)的放射性锝 - 99的定量分析。配备氧气(O)动态反应池的在线固相萃取 - 电感耦合等离子体质谱仪(ICP - QMS)(在线固相萃取 - ICP - MS - DRC)被证明是一个全面的自动分析系统,无需人工操作。在三步分离(固相萃取 - 动态反应池 - 四极杆质量过滤器)过程中,我们发现干扰物质允许锝与钼、锝与钌的丰度比分别为1.5×10和1.1×10时共存。使用钌 - 102/钌 - 101的天然同位素比进行经典数学校正来计算钌的残留量。使用这个优化系统,对于50毫升进样量,锝的检测限(DL;3σ)为9.3 pg/L(= 5.9毫贝克勒尔/升),并且以每个样品24分钟的周期进行连续测量。为了测量更低浓度的锝,使用AG1 - X8阴离子交换柱对20升海水进行研究。其检测限比以前的方法(70.0飞克/升)大约高1000倍。因此,该方法分别能承受锝与钼、锝与钌的共存比例为5.8×10和3.5×10。对环境样品进行了加标回收试验;所得结果与加标量显示出良好的一致性。