Betz Johanna, Vitali-Serdoz Laura, Buia Veronica, Walaschek Janusch, Rittger Harald, Bastian Dirk
Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nuernberg (FAU), Erlangen, Germany.
Department for Cardiology, Klinikum Fuerth, Teaching Hospital of Erlangen-Nuernberg University, Fuerth, Germany.
Heart Rhythm O2. 2021 Apr 3;2(3):262-270. doi: 10.1016/j.hroo.2021.03.010. eCollection 2021 Jun.
MicroFidelity catheter technology may facilitate voltage-guided ablation by high-resolution electroanatomic mapping (HR-EAM) and precisely targeted energy application.
To evaluate the performance of minielectrode (ME) technology for zero-fluoroscopy substrate-guided cavotricuspid isthmus (CTI) ablation.
Eighty-two patients underwent near zero-fluoroscopy substrate-guided CTI ablation using a nonirrigated large-tip catheter with 3 MEs. The CTI was subdivided into 15 electroanatomic segments. Bipolar voltage maps were compared with ME signals. The outcome was compared with a historic cohort of 92 patients who underwent linear ablation.
Compared with linear ablation, the substrate-guided approach was associated with an almost halved ablation duration (336 ± 228 vs 649 ± 409 seconds, < .001), halved radiofrequency energy applied (14.2 ± 10.6 vs 28.6 ± 19.6 kJ, < .001), and shorter procedure duration (60.8 ± 33.8 vs 76.3 ± 40.9 minutes, = .008) limiting the extent of energy delivery to 22.7% of the CTI area. HR-EAM visualized 2.03 ± 0.88 conductive pathways with a diameter of 5.35 ± 1.98 mm. A higher number of ME-detected bundles and a larger channel diameter correlated with increased ablation requirements. In 97.6% of the voltage-guided and 88.0% of the linear procedures, fluoroscopy was not used.
HR-EAM-based substrate-guided CTI ablation may improve procedural outcome compared with the linear approach. Enhanced identification of discrete conductive pathways correlates with ablation efficacy. The electroanatomic subdivision of the CTI into 15 segments was feasible and may improve the understanding and comparability of anatomic variants and ablation results. Independent of the ablation strategy, modern EAM technology enables safe zero-fluoroscopy procedures in the majority of cases.
微保真导管技术可通过高分辨率电解剖标测(HR-EAM)促进电压引导下的消融,并实现精确的能量应用。
评估微电极(ME)技术在零透视基质引导下三尖瓣峡部(CTI)消融中的性能。
82例患者使用带有3个微电极的非灌注大 tip 导管进行了近乎零透视基质引导下的CTI消融。CTI被细分为15个电解剖节段。将双极电压图与微电极信号进行比较。将结果与92例行线性消融的历史队列患者进行比较。
与线性消融相比,基质引导方法的消融持续时间几乎减半(336±228秒对649±409秒,P<.001),施加的射频能量减半(14.2±10.6 kJ对28.6±19.6 kJ,P<.001),手术时间缩短(60.8±33.8分钟对76.3±40.9分钟,P=.008),将能量传递范围限制在CTI面积的22.7%。HR-EAM显示有2.03±0.88条直径为5.35±1.98 mm的传导通路。微电极检测到的束数量越多和通道直径越大,消融需求越高。在97.6%的电压引导手术和88.0%的线性手术中未使用透视。
与线性方法相比,基于HR-EAM的基质引导CTI消融可能改善手术结果。对离散传导通路的增强识别与消融效果相关。将CTI电解剖细分为15个节段是可行的,可能会改善对解剖变异和消融结果的理解及可比性。无论消融策略如何,现代EAM技术在大多数情况下都能实现安全的零透视手术。