Hasan Nahian Ibn
Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh.
Comput Methods Programs Biomed Update. 2021;1:100022. doi: 10.1016/j.cmpbup.2021.100022. Epub 2021 Jul 23.
The outbreak of the SARS-CoV-2/Covid-19 virus in 2019-2020 has made the world look for fast and accurate detection methods of the disease. The most commonly used tools for detecting Covid patients are Chest-X-ray or Chest-CT-scans of the patient. However, sometimes it's hard for the physicians to diagnose the SARS-CoV-2 infection from the raw image. Moreover, sometimes, deep-learning-based techniques, using raw images, fail to detect the infection. Hence, this paper represents a hybrid method employing both traditional signal processing and deep learning technique for quick detection of SARS-CoV-2 patients based on the CT-scan and Chest-X-ray images of a patient. Unlike the other AI-based methods, here, a CT-scan/Chest-X-ray image is decomposed by two-dimensional Empirical Mode Decomposition (2DEMD), and it generates different orders of Intrinsic Mode Functions (IMFs). Next, The decomposed IMF signals are fed into a deep Convolutional Neural Network (CNN) for feature extraction and classification of Covid patients and Non-Covid patients. The proposed method is validated on three publicly available SARS-CoV-2 data sets using two deep CNN architectures. In all the databases, the modified CT-scan/Chest-X-ray image provides a better result than the raw image in terms of classification accuracy of two fundamental CNNs. This paper represents a new viewpoint of extracting preprocessed features from the raw image using 2DEMD.
2019 - 2020年严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)/新型冠状病毒肺炎(Covid-19)病毒的爆发促使全世界寻找该疾病快速准确的检测方法。检测Covid患者最常用的工具是对患者进行胸部X光或胸部CT扫描。然而,有时医生很难从原始图像中诊断出SARS-CoV-2感染。此外,有时基于深度学习的技术使用原始图像也无法检测到感染。因此,本文提出了一种混合方法,该方法结合了传统信号处理和深度学习技术,用于基于患者的CT扫描和胸部X光图像快速检测SARS-CoV-2患者。与其他基于人工智能的方法不同,这里通过二维经验模态分解(2DEMD)对CT扫描/胸部X光图像进行分解,并生成不同阶次的本征模函数(IMF)。接下来,将分解后的IMF信号输入到深度卷积神经网络(CNN)中,用于对Covid患者和非Covid患者进行特征提取和分类。所提出的方法在三个公开可用的SARS-CoV-2数据集上使用两种深度CNN架构进行了验证。在所有数据库中,就两个基本CNN的分类准确率而言,经过处理的CT扫描/胸部X光图像比原始图像提供了更好的结果。本文提出了一种使用2DEMD从原始图像中提取预处理特征的新观点。