Tavabi Leili, Tran Trang, Stefanov Kalin, Borsari Brian, Woolley Joshua D, Scherer Stefan, Soleymani Mohammad
Institute for Creative Technologies, University of Southern California, Los Angeles, CA, USA.
Faculty of Information Technology, Monash University, Melbourne, VIC, Australia.
Proc Conf. 2021 Jun;2021:110-115. doi: 10.18653/v1/2021.clpsych-1.13.
Analysis of client and therapist behavior in counseling sessions can provide helpful insights for assessing the quality of the session and consequently, the client's behavioral outcome. In this paper, we study the automatic classification of standardized behavior codes (i.e. annotations) used for assessment of psychotherapy sessions in Motivational Interviewing (MI). We develop models and examine the classification of client behaviors throughout MI sessions, comparing the performance by models trained on large pretrained embeddings (RoBERTa) versus interpretable and expert-selected features (LIWC). Our best performing model using the pretrained RoBERTa embeddings beats the baseline model, achieving an F1 score of 0.66 in the subject-independent 3-class classification. Through statistical analysis on the classification results, we identify prominent LIWC features that may not have been captured by the model using pretrained embeddings. Although classification using LIWC features underperforms RoBERTa, our findings motivate the future direction of incorporating auxiliary tasks in the classification of MI codes.
对咨询过程中客户和治疗师行为的分析可为评估咨询过程的质量以及客户的行为结果提供有益的见解。在本文中,我们研究了用于动机性访谈(MI)中心理治疗过程评估的标准化行为代码(即注释)的自动分类。我们开发模型并检查整个MI过程中客户行为的分类,比较在大型预训练嵌入(RoBERTa)上训练的模型与可解释且由专家选择的特征(LIWC)的性能。我们使用预训练的RoBERTa嵌入的最佳性能模型优于基线模型,在独立于主体的3类分类中实现了0.66的F1分数。通过对分类结果的统计分析,我们确定了使用预训练嵌入的模型可能未捕获的突出LIWC特征。尽管使用LIWC特征的分类性能不如RoBERTa,但我们的发现为MI代码分类中纳入辅助任务的未来方向提供了动力。