Suppr超能文献

自动行为编码以提高基于聊天的自杀预防热线中动机性访谈的有效性:一项临床试验的二次分析

Automated Behavioral Coding to Enhance the Effectiveness of Motivational Interviewing in a Chat-Based Suicide Prevention Helpline: Secondary Analysis of a Clinical Trial.

作者信息

Pellemans Mathijs, Salmi Salim, Mérelle Saskia, Janssen Wilco, van der Mei Rob

机构信息

Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.

113 Suicide Prevention, Amsterdam, Netherlands.

出版信息

J Med Internet Res. 2024 Aug 1;26:e53562. doi: 10.2196/53562.

Abstract

BACKGROUND

With the rise of computer science and artificial intelligence, analyzing large data sets promises enormous potential in gaining insights for developing and improving evidence-based health interventions. One such intervention is the counseling strategy motivational interviewing (MI), which has been found effective in improving a wide range of health-related behaviors. Despite the simplicity of its principles, MI can be a challenging skill to learn and requires expertise to apply effectively.

OBJECTIVE

This study aims to investigate the performance of artificial intelligence models in classifying MI behavior and explore the feasibility of using these models in online helplines for mental health as an automated support tool for counselors in clinical practice.

METHODS

We used a coded data set of 253 MI counseling chat sessions from the 113 Suicide Prevention helpline. With 23,982 messages coded with the MI Sequential Code for Observing Process Exchanges codebook, we trained and evaluated 4 machine learning models and 1 deep learning model to classify client- and counselor MI behavior based on language use.

RESULTS

The deep learning model BERTje outperformed all machine learning models, accurately predicting counselor behavior (accuracy=0.72, area under the curve [AUC]=0.95, Cohen κ=0.69). It differentiated MI congruent and incongruent counselor behavior (AUC=0.92, κ=0.65) and evocative and nonevocative language (AUC=0.92, κ=0.66). For client behavior, the model achieved an accuracy of 0.70 (AUC=0.89, κ=0.55). The model's interpretable predictions discerned client change talk and sustain talk, counselor affirmations, and reflection types, facilitating valuable counselor feedback.

CONCLUSIONS

The results of this study demonstrate that artificial intelligence techniques can accurately classify MI behavior, indicating their potential as a valuable tool for enhancing MI proficiency in online helplines for mental health. Provided that the data set size is sufficiently large with enough training samples for each behavioral code, these methods can be trained and applied to other domains and languages, offering a scalable and cost-effective way to evaluate MI adherence, accelerate behavioral coding, and provide therapists with personalized, quick, and objective feedback.

摘要

背景

随着计算机科学和人工智能的兴起,分析大型数据集有望为制定和改进循证健康干预措施提供巨大潜力。一种这样的干预措施是咨询策略动机性访谈(MI),已发现其在改善广泛的健康相关行为方面有效。尽管其原则简单,但MI可能是一项具有挑战性的技能,需要专业知识才能有效应用。

目的

本研究旨在调查人工智能模型在对MI行为进行分类方面的表现,并探索在心理健康在线求助热线中使用这些模型作为临床实践中咨询师的自动化支持工具的可行性。

方法

我们使用了来自113条自杀预防求助热线的253次MI咨询聊天记录的编码数据集。使用《观察过程交流的MI顺序代码手册》对23982条消息进行编码后,我们训练并评估了4种机器学习模型和1种深度学习模型,以根据语言使用情况对客户和咨询师的MI行为进行分类。

结果

深度学习模型BERTje的表现优于所有机器学习模型,能准确预测咨询师行为(准确率=0.72,曲线下面积[AUC]=0.95,科恩κ系数=0.69)。它能区分MI一致和不一致的咨询师行为(AUC=0.92,κ=0.65)以及唤起性和非唤起性语言(AUC=0.92,κ=0.66)。对于客户行为,该模型的准确率为0.70(AUC=0.89,κ=0.55)。该模型可解释的预测能够识别客户的改变谈话和维持谈话、咨询师的肯定以及反思类型,有助于提供有价值的咨询师反馈。

结论

本研究结果表明,人工智能技术能够准确分类MI行为,表明其有潜力成为提高心理健康在线求助热线中MI熟练程度的有价值工具。只要数据集规模足够大,每个行为代码有足够的训练样本,这些方法就可以进行训练并应用于其他领域和语言,提供一种可扩展且具有成本效益的方式来评估MI依从性、加速行为编码,并为治疗师提供个性化、快速且客观的反馈。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfae/11327631/52e03313d3d2/jmir_v26i1e53562_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验