Doctoral Student in the Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
J Egypt Natl Canc Inst. 2021 Aug 2;33(1):19. doi: 10.1186/s43046-021-00077-1.
The poor outcomes from triple-negative breast cancer (TNBC) therapy are mainly because of TNBC cells' heterogeneity, and chemotherapy is the current approach in TNBC treatment. A previous study reported that CCA-1.1, the alcohol-derivative from monocarbonyl PGV-1, exhibits anticancer activities against several cancer cells, as well as in TNBC. This time, we utilized an integrative bioinformatics approach to identify potential biomarkers and molecular mechanisms of CCA-1.1 in inhibiting proliferation in TNBC cells.
Genomics data expression were collected through UALCAN, derived initially from TCGA-BRCA data, and selected for TNBC-only cases. We predict CCA-1.1 potential targets using SMILES-based similarity functions across six public web tools (BindingDB, DINIES, Swiss Target Prediction, Polypharmacology browser/PPB, Similarity Ensemble Approach/SEA, and TargetNet). The overlapping genes between the CCA-1.1 target and TNBC (CPTGs) were selected and used in further assessment. Gene ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) network analysis were generated in WebGestalt. The protein-protein interaction (PPI) network was established in STRING-DB, and then the hub-genes were defined through Cytoscape. The hub-gene's survival analysis was processed via CTGS web tools using TCGA database.
KEGG pathway analysis pointed to cell cycle process which enriched in CCA-1.1 potential targets. We also identified nine CPTGs that are responsible in mitosis, including AURKB, PLK1, CDK1, TPX2, AURKA, KIF11, CDC7, CHEK1, and CDC25B.
We suggested CCA-1.1 possibly regulated cell cycle process during mitosis, which led to cell death. These findings needed to be investigated through experimental studies to reinforce scientific data of CCA-1.1 therapy against TNBC.
三阴性乳腺癌(TNBC)治疗效果不佳主要是由于 TNBC 细胞的异质性,而化疗是目前 TNBC 治疗的方法。先前的研究报告称,PGV-1 的羰基衍生物 CCA-1.1 对几种癌细胞以及 TNBC 均具有抗癌活性。本次研究我们采用整合生物信息学方法,鉴定 CCA-1.1 抑制 TNBC 细胞增殖的潜在生物标志物和分子机制。
通过 UALCAN 收集基因组数据表达,该数据库最初来源于 TCGA-BRCA 数据,并选择仅用于 TNBC 的病例。我们使用基于 SMILES 的相似性函数,通过六个公共网络工具(BindingDB、DINIES、Swiss Target Prediction、Polypharmacology browser/PPB、Similarity Ensemble Approach/SEA 和 TargetNet)预测 CCA-1.1 的潜在靶点。选择 CCA-1.1 靶标和 TNBC 之间的重叠基因(CPTGs),并进一步进行评估。在 WebGestalt 中生成基因本体论(GO)富集和京都基因与基因组百科全书(KEGG)网络分析。在 STRING-DB 中建立蛋白质-蛋白质相互作用(PPI)网络,然后通过 Cytoscape 定义枢纽基因。使用 TCGA 数据库通过 CTGS 网络工具进行枢纽基因的生存分析。
KEGG 通路分析表明,细胞周期过程在 CCA-1.1 的潜在靶点中富集。我们还确定了九个与有丝分裂有关的 CPTGs,包括 AURKB、PLK1、CDK1、TPX2、AURKA、KIF11、CDC7、CHEK1 和 CDC25B。
我们认为 CCA-1.1 可能通过调节有丝分裂过程中的细胞周期,导致细胞死亡。这些发现需要通过实验研究来进一步证实 CCA-1.1 治疗 TNBC 的科学数据。