Suppr超能文献

通过整合转录组和通路富集分析揭开乳腺癌预后生物标志物的作用之谜

Demystifying the Role of Prognostic Biomarkers in Breast Cancer through Integrated Transcriptome and Pathway Enrichment Analyses.

作者信息

Mishra Divya, Mishra Ashish, Nand Rai Sachchida, Vamanu Emanuel, Singh Mohan P

机构信息

Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj 211002, India.

Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania.

出版信息

Diagnostics (Basel). 2023 Mar 16;13(6):1142. doi: 10.3390/diagnostics13061142.

Abstract

Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of death in women. Researchers have discovered an increasing number of molecular targets for BC prognosis and therapy. However, it is still urgent to identify new biomarkers. Therefore, we evaluated biomarkers that may contribute to the diagnosis and treatment of BC. We searched TCGA datasets and identified differentially expressed genes (DEGs) by comparing tumor (100 samples) and non-tumor (100 samples) tissues using the Deseq2 package. Pathway and functional enrichment analysis of the DEGs was performed using the for Annotation, Visualization, and Integrated Discovery. The protein-protein interaction (PPI) network was identified using the STRING database and visualized through Cytoscape software. Hub gene analysis of the PPI network was completed using cytohubba plugins. The associations between the identified genes and overall survival (OS) were analyzed using a Kaplan-Meier plot. Finally, we have identified hub genes at the transcriptome level. A total of 824 DEGs were identified, which were mostly enriched in cell proliferation, signal transduction, and cell division. The PPI network comprised 822 nodes and 12,145 edges. Elevated expression of the five hub genes and are related to poor OS in breast cancer patients. A promoter methylation study showed these genes to be hypomethylated. Validation through genetic alteration and missense mutations resulted in chromosomal instability, leading to improper chromosome segregation causing aneuploidy. The enriched functions and pathways included the cell cycle, oocyte meiosis, and the p53 signaling pathway. The identified five hub genes in breast cancer have the potential to become useful targets for the diagnosis and treatment of breast cancer.

摘要

乳腺癌(BC)是女性中最常被诊断出的癌症,也是主要的死亡原因。研究人员已经发现了越来越多用于乳腺癌预后和治疗的分子靶点。然而,识别新的生物标志物仍然迫在眉睫。因此,我们评估了可能有助于乳腺癌诊断和治疗的生物标志物。我们搜索了TCGA数据集,并使用Deseq2软件包通过比较肿瘤组织(100个样本)和非肿瘤组织(100个样本)来识别差异表达基因(DEG)。使用用于注释、可视化和综合发现的工具对DEG进行通路和功能富集分析。使用STRING数据库识别蛋白质-蛋白质相互作用(PPI)网络,并通过Cytoscape软件进行可视化。使用cytohubba插件完成PPI网络的枢纽基因分析。使用Kaplan-Meier图分析所识别基因与总生存期(OS)之间的关联。最后,我们在转录组水平上识别出了枢纽基因。总共识别出824个DEG,它们大多富集于细胞增殖、信号转导和细胞分裂。PPI网络由822个节点和12145条边组成。五个枢纽基因 、 、 、 和 的表达升高与乳腺癌患者的不良OS相关。一项启动子甲基化研究表明这些基因处于低甲基化状态。通过基因改变和错义突变进行验证导致染色体不稳定,进而导致染色体分离不当,引起非整倍体。富集的功能和通路包括细胞周期、卵母细胞减数分裂和p53信号通路。在乳腺癌中识别出的这五个枢纽基因有潜力成为乳腺癌诊断和治疗的有用靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fbe/10046968/221ef0a0a37b/diagnostics-13-01142-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验