Suppr超能文献

电化学工程制备石墨烯负载锑用于高性能钠存储负极

Electrochemically Engineering Antimony Interspersed on Graphene toward Advanced Sodium-Storage Anodes.

作者信息

Shuai Honglei, Liu Huanqing, Li Jiayang, Fang Susu, Xu Laiqiang, Yang Yingchang, Hou Hongshuai, Zou Guoqiang, Hu Jiugang, Ji Xiaobo

机构信息

College of Chemistry and Chemical Engineering, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.

College of Material and Chemical Engineering, Tongren University, Tongren 554300, China.

出版信息

Inorg Chem. 2021 Aug 16;60(16):12526-12535. doi: 10.1021/acs.inorgchem.1c01758. Epub 2021 Aug 1.

Abstract

Nanoengineering of metal anode materials shows great potential for energy storage with high capacity. Zero-dimensional nanoparticles are conducive to acquire remarkable electrochemical properties in sodium-ion batteries (SIBs) because of their enlarged surface active sites. However, it is still difficult to fulfill the requirements of practical applications in batteries owing to the deficiency of efficient and scalable preparation approaches of high-performance metal electrode materials. Herein, an electrochemical cathodic corrosion method is proposed for the tunable preparation of nanostructured antimony (Sb) by the introduction of a surfactant, which can efficiently avoid the agglomeration of Sb atom clusters generated from the Zintl compound and further stacking into bulk during the electrochemical process. Subsequently, graphene as the support and conductive matrix is uniformly interspersed by generating Sb nanoparticles (Sb/Gr). Moreover, the reversible crystalline-phase evolution of Sb ⇋ NaSb ⇋NaSb for Sb/Gr was studied by in situ X-ray diffraction (XRD). Benefiting from the interconnection of the conductive network, Sb/Gr anodes deliver a high capacity of 635.34 mAh g, a retained capacity of 507.2 mAh g after 150 cycles at 0.1 C (1 C = 660 mAh g), and excellent rate performance with the capacities of 473.41 and 405.09 mAh g at 2 and 5 C, respectively. The superior cycle stability with a capacity of 346.26 mAh g is achieved after 500 cycles at 2 C. This electrochemical approach offers a new route toward developing metal anodes with designed nanostructures for high-performance SIBs.

摘要

金属负极材料的纳米工程在高容量储能方面显示出巨大潜力。零维纳米颗粒由于其扩大的表面活性位点,有利于在钠离子电池(SIB)中获得显著的电化学性能。然而,由于缺乏高效且可扩展的高性能金属电极材料制备方法,仍难以满足电池实际应用的要求。在此,提出了一种电化学阴极腐蚀方法,通过引入表面活性剂来可调谐制备纳米结构锑(Sb),这可以有效避免由津特耳化合物产生的Sb原子簇在电化学过程中团聚并进一步堆积成块体。随后,通过生成Sb纳米颗粒(Sb/Gr),石墨烯作为支撑体和导电基体被均匀地穿插其中。此外,通过原位X射线衍射(XRD)研究了Sb/Gr中Sb⇋NaSb⇋NaSb的可逆晶相演变。得益于导电网络的互连,Sb/Gr负极具有635.34 mAh g的高容量,在0.1 C(1 C = 660 mAh g)下循环150次后保留容量为507.2 mAh g,并且在2 C和5 C时分别具有473.41和405.09 mAh g的容量,展现出优异的倍率性能。在2 C下循环500次后,实现了346.26 mAh g容量的优异循环稳定性。这种电化学方法为开发具有设计纳米结构的高性能SIB金属负极提供了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验