Huang Xianwu, Huang Jiahui, Yang Dong, Wu Peiyi
State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Laboratory for Advanced Materials, Fudan University, Shanghai, 200433, China.
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China.
Adv Sci (Weinh). 2021 Sep;8(18):e2101664. doi: 10.1002/advs.202101664. Epub 2021 Aug 2.
MXenes as an emerging two-dimensional (2D) material have attracted tremendous interest in electrochemical energy-storage systems such as supercapacitors. Nevertheless, 2D MXene flakes intrinsically tend to lie flat on the substrate when self-assembling as electrodes, leading to the highly tortuous ion pathways orthogonal to the current collector and hindering ion accessibility. Herein, a facile strategy toward multi-scale structural engineering is proposed to fabricate high-performance MXene hydrogel supercapacitor electrodes. By unidirectional freezing of the MXene slurry followed by a designed thawing process in the sulfuric acid electrolyte, the hydrogel electrode is endowed with a three-dimensional (3D) open macrostructure impregnated with sufficient electrolyte and H -intercalated microstructure, which provide abundant active sites for ion storage. Meanwhile, the ordered channels bring through-electrode ion and electron transportation pathways that facilitate electrolyte infiltration and mass exchange between electrolyte and electrode. Furthermore, this strategy can also be extended to the fabrication of a 3D-printed all-MXene micro-supercapacitor (MSC), delivering an ultrahigh areal capacitance of 2.0 F cm at 1.2 mA cm and retaining 1.2 F cm at 60 mA cm together with record-high energy density (0.1 mWh cm at 0.38 mW cm ).
MXenes作为一种新兴的二维(2D)材料,在超级电容器等电化学储能系统中引起了极大的关注。然而,二维MXene薄片在自组装成电极时,本质上倾向于平铺在基底上,导致与集流体正交的离子传输路径高度曲折,阻碍了离子的可达性。在此,提出了一种用于多尺度结构工程的简便策略,以制备高性能的MXene水凝胶超级电容器电极。通过对MXene浆料进行单向冷冻,然后在硫酸电解质中进行设计好的解冻过程,水凝胶电极被赋予了一种三维(3D)开放宏观结构,其中浸渍有足够的电解质以及H嵌入微观结构,这为离子存储提供了丰富的活性位点。同时,有序通道带来了贯穿电极的离子和电子传输路径,促进了电解质的渗透以及电解质与电极之间的质量交换。此外,该策略还可以扩展到三维打印的全MXene微型超级电容器(MSC)的制造中,在1.2 mA cm时提供2.0 F cm的超高面积电容,在60 mA cm时保持1.2 F cm,同时具有创纪录的高能量密度(在0.38 mW cm时为0.1 mWh cm)。