Noor Navid, Baker Thomas, Lee Hyejin, Evans Elliot, Angizi Shayan, Henderson Jeffrey Daniel, Rakhsha Amirhossein, Higgins Drew
Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada.
School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea.
ACS Omega. 2024 Feb 22;9(9):10080-10089. doi: 10.1021/acsomega.3c04836. eCollection 2024 Mar 5.
Carbon-based supercapacitor electrodes are generally restricted in energy density, as they rely exclusively on electric double-layer capacitance (EDLC). The introduction of redox-active organic molecules to obtain pseudocapacitance is a promising route to develop electrode materials with improved energy densities. In this work, we develop a porous nitrogen-doped reduced graphene oxide and 9,10-phenanthrenequinone composite (N-HtrGO/PQ) via a facile one-step physical adsorption method. The electrochemical evaluation of N-HtrGO/PQ using cyclic voltammetry showed a high capacitance of 605 F g in 1 M HSO when the composite consisted of 30% 9,10-phenanthrenequinone and 70% N-HtrGO. The measured capacitance significantly exceeded pure N-HtrGO without the addition of redox-active molecules (257 F g). In addition to promising capacitance, the N-HtrGO/30PQ composite showed a capacitance retention of 94.9% following 20,000 charge/discharge cycles. Based on Fourier transform infrared spectroscopy, we postulate that the strong π-π interaction between PQ molecules and the N-HtrGO substrate enhances the specific capacitance of the composite by shortening pathways for electron transfer while improving structural stability.
基于碳的超级电容器电极通常在能量密度方面受到限制,因为它们完全依赖于双电层电容(EDLC)。引入具有氧化还原活性的有机分子以获得赝电容是开发具有更高能量密度的电极材料的一条有前途的途径。在这项工作中,我们通过一种简便的一步物理吸附法制备了一种多孔氮掺杂还原氧化石墨烯与9,10-菲醌复合材料(N-HtrGO/PQ)。使用循环伏安法对N-HtrGO/PQ进行的电化学评估表明,当该复合材料由30%的9,10-菲醌和70%的N-HtrGO组成时,在1 M HSO中其电容高达605 F g 。测得的电容显著超过未添加氧化还原活性分子的纯N-HtrGO(257 F g )。除了具有良好的电容外,N-HtrGO/30PQ复合材料在20000次充放电循环后电容保持率为94.9%。基于傅里叶变换红外光谱,我们推测PQ分子与N-HtrGO基底之间强烈的π-π相互作用通过缩短电子转移路径并提高结构稳定性来增强复合材料的比电容。