Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.
Max-Planck-Insitute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Elife. 2021 Aug 2;10:e66551. doi: 10.7554/eLife.66551.
Rapid progress in technologies such as calcium imaging and electrophysiology has seen a dramatic increase in the size and extent of neural recordings. Even so, interpretation of this data requires considerable knowledge about the nature of the representation and often depends on manual operations. Decoding provides a means to infer the information content of such recordings but typically requires highly processed data and prior knowledge of the encoding scheme. Here, we developed a deep-learning framework able to decode sensory and behavioral variables directly from wide-band neural data. The network requires little user input and generalizes across stimuli, behaviors, brain regions, and recording techniques. Once trained, it can be analyzed to determine elements of the neural code that are informative about a given variable. We validated this approach using electrophysiological and calcium-imaging data from rodent auditory cortex and hippocampus as well as human electrocorticography (ECoG) data. We show successful decoding of finger movement, auditory stimuli, and spatial behaviors - including a novel representation of head direction - from raw neural activity.
技术的快速发展,如钙成像和电生理学,使得神经记录的规模和范围有了显著的增加。即便如此,对这些数据的解释仍然需要对表示形式的本质有相当的了解,并且通常依赖于手动操作。解码提供了一种推断这些记录的信息内容的方法,但通常需要高度处理的数据和对编码方案的先验知识。在这里,我们开发了一个深度学习框架,能够直接从宽带神经数据中解码感觉和行为变量。该网络需要很少的用户输入,并且可以跨刺激、行为、脑区和记录技术进行泛化。一旦训练完成,就可以对其进行分析,以确定与给定变量相关的神经代码元素。我们使用来自啮齿动物听觉皮层和海马体的电生理学和钙成像数据以及人类脑电描记术 (ECoG) 数据验证了这种方法。我们成功地从原始神经活动中解码了手指运动、听觉刺激和空间行为,包括头部方向的新表示。