Instituto Cajal, CSIC, Madrid, Spain.
Grupo de Neurocomputación Biológica (GNB), Universidad Autónoma de Madrid, Madrid, Spain.
Elife. 2022 Sep 5;11:e77772. doi: 10.7554/eLife.77772.
Local field potential (LFP) deflections and oscillations define hippocampal sharp-wave ripples (SWRs), one of the most synchronous events of the brain. SWRs reflect firing and synaptic current sequences emerging from cognitively relevant neuronal ensembles. While spectral analysis have permitted advances, the surge of ultra-dense recordings now call for new automatic detection strategies. Here, we show how one-dimensional convolutional networks operating over high-density LFP hippocampal recordings allowed for automatic identification of SWR from the rodent hippocampus. When applied without retraining to new datasets and ultra-dense hippocampus-wide recordings, we discovered physiologically relevant processes associated to the emergence of SWR, prompting for novel classification criteria. To gain interpretability, we developed a method to interrogate the operation of the artificial network. We found it relied in feature-based specialization, which permit identification of spatially segregated oscillations and deflections, as well as synchronous population firing typical of replay. Thus, using deep learning-based approaches may change the current heuristic for a better mechanistic interpretation of these relevant neurophysiological events.
局部场电位 (LFP) 偏移和振荡定义了海马体的尖波涟漪 (SWR),这是大脑中最同步的事件之一。SWR 反映了来自认知相关神经元集合的发射和突触电流序列。虽然频谱分析已经取得了进展,但现在超高密度的记录需要新的自动检测策略。在这里,我们展示了如何使用一维卷积网络对高密度 LFP 海马体记录进行操作,从而自动识别啮齿动物海马体中的 SWR。当我们将其应用于未经重新训练的新数据集和超高密度的海马体全记录时,我们发现了与 SWR 出现相关的生理相关过程,并提出了新的分类标准。为了获得可解释性,我们开发了一种询问人工网络操作的方法。我们发现它依赖于基于特征的专业化,这允许识别空间分离的振荡和偏移,以及重放的典型同步群体发射。因此,使用基于深度学习的方法可能会改变当前的启发式方法,以更好地对这些相关神经生理事件进行机械解释。