Tenaya Therapeutics, South San Francisco, United States.
Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, United States.
Elife. 2021 Aug 2;10:e68714. doi: 10.7554/eLife.68714.
Drug-induced cardiotoxicity and hepatotoxicity are major causes of drug attrition. To decrease late-stage drug attrition, pharmaceutical and biotechnology industries need to establish biologically relevant models that use phenotypic screening to detect drug-induced toxicity in vitro. In this study, we sought to rapidly detect patterns of cardiotoxicity using high-content image analysis with deep learning and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We screened a library of 1280 bioactive compounds and identified those with potential cardiotoxic liabilities in iPSC-CMs using a single-parameter score based on deep learning. Compounds demonstrating cardiotoxicity in iPSC-CMs included DNA intercalators, ion channel blockers, epidermal growth factor receptor, cyclin-dependent kinase, and multi-kinase inhibitors. We also screened a diverse library of molecules with unknown targets and identified chemical frameworks that show cardiotoxic signal in iPSC-CMs. By using this screening approach during target discovery and lead optimization, we can de-risk early-stage drug discovery. We show that the broad applicability of combining deep learning with iPSC technology is an effective way to interrogate cellular phenotypes and identify drugs that may protect against diseased phenotypes and deleterious mutations.
药物诱导的心脏毒性和肝毒性是药物淘汰的主要原因。为了减少后期药物淘汰,制药和生物技术行业需要建立具有生物学相关性的模型,利用表型筛选在体外检测药物诱导的毒性。在这项研究中,我们试图使用深度学习和诱导多能干细胞衍生的心肌细胞(iPSC-CMs)的高内涵图像分析快速检测心脏毒性模式。我们筛选了一个包含 1280 种生物活性化合物的文库,并使用基于深度学习的单一参数评分来鉴定 iPSC-CMs 中具有潜在心脏毒性的化合物。在 iPSC-CMs 中表现出心脏毒性的化合物包括 DNA 嵌入剂、离子通道阻滞剂、表皮生长因子受体、细胞周期蛋白依赖性激酶和多激酶抑制剂。我们还筛选了一个具有未知靶点的多样化分子文库,并鉴定出在 iPSC-CMs 中显示心脏毒性信号的化学框架。通过在目标发现和先导化合物优化过程中使用这种筛选方法,我们可以降低早期药物发现的风险。我们表明,将深度学习与 iPSC 技术相结合的广泛适用性是一种有效的方法,可以探究细胞表型,并识别可能预防疾病表型和有害突变的药物。