Suppr超能文献

改良早期乳腺癌局部区域复发、对侧第二原发肿瘤和远处转移的风险评估:INFLUENCE 2.0 模型。

Improved risk estimation of locoregional recurrence, secondary contralateral tumors and distant metastases in early breast cancer: the INFLUENCE 2.0 model.

机构信息

Tumor Center Regensburg/University of Regensburg, Institute for Quality Control and Health Services Research, Regensburg, Germany.

Evidencio, medical Decision Support, Haaksbergen, The Netherlands.

出版信息

Breast Cancer Res Treat. 2021 Oct;189(3):817-826. doi: 10.1007/s10549-021-06335-z. Epub 2021 Aug 2.

Abstract

PURPOSE

To extend the functionality of the existing INFLUENCE nomogram for locoregional recurrence (LRR) of breast cancer toward the prediction of secondary primary tumors (SP) and distant metastases (DM) using updated follow-up data and the best suitable statistical approaches.

METHODS

Data on women diagnosed with non-metastatic invasive breast cancer were derived from the Netherlands Cancer Registry (n = 13,494). To provide flexible time-dependent individual risk predictions for LRR, SP, and DM, three statistical approaches were assessed; a Cox proportional hazard approach (COX), a parametric spline approach (PAR), and a random survival forest (RSF). These approaches were evaluated on their discrimination using the Area Under the Curve (AUC) statistic and on calibration using the Integrated Calibration Index (ICI). To correct for optimism, the performance measures were assessed by drawing 200 bootstrap samples.

RESULTS

Age, tumor grade, pT, pN, multifocality, type of surgery, hormonal receptor status, HER2-status, and adjuvant therapy were included as predictors. While all three approaches showed adequate calibration, the RSF approach offers the best optimism-corrected 5-year AUC for LRR (0.75, 95%CI: 0.74-0.76) and SP (0.67, 95%CI: 0.65-0.68). For the prediction of DM, all three approaches showed equivalent discrimination (5-year AUC: 0.77-0.78), while COX seems to have an advantage concerning calibration (ICI < 0.01). Finally, an online calculator of INFLUENCE 2.0 was created.

CONCLUSIONS

INFLUENCE 2.0 is a flexible model to predict time-dependent individual risks of LRR, SP and DM at a 5-year scale; it can support clinical decision-making regarding personalized follow-up strategies for curatively treated non-metastatic breast cancer patients.

摘要

目的

利用最新的随访数据和最佳的统计方法,扩展现有的 INFLUENCE 局部区域复发(LRR)乳腺癌nomogram 的功能,以预测继发性原发性肿瘤(SP)和远处转移(DM)。

方法

从荷兰癌症登记处(n=13494)获取诊断为非转移性浸润性乳腺癌的女性数据。为了为 LRR、SP 和 DM 提供灵活的随时间变化的个体风险预测,评估了三种统计方法;Cox 比例风险方法(COX)、参数样条方法(PAR)和随机生存森林(RSF)。通过评估曲线下面积(AUC)统计量来评估这些方法的判别能力,并通过综合校准指数(ICI)来评估校准能力。为了校正乐观性,通过绘制 200 个自举样本评估性能指标。

结果

年龄、肿瘤分级、pT、pN、多灶性、手术类型、激素受体状态、HER2 状态和辅助治疗被纳入预测因素。虽然所有三种方法都显示出良好的校准,但 RSF 方法提供了最佳的乐观校正 5 年 LRR(0.75,95%CI:0.74-0.76)和 SP(0.67,95%CI:0.65-0.68)的 AUC。对于 DM 的预测,所有三种方法的判别能力相当(5 年 AUC:0.77-0.78),而 COX 似乎在校准方面具有优势(ICI<0.01)。最后,创建了 INFLUENCE 2.0 的在线计算器。

结论

INFLUENCE 2.0 是一种灵活的模型,可以预测 5 年内 LRR、SP 和 DM 的时间依赖性个体风险;它可以支持针对治愈性治疗的非转移性乳腺癌患者的个性化随访策略的临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59be/8505302/0a71cf5151fd/10549_2021_6335_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验