Suppr超能文献

基于模糊CREAM和贝叶斯网络的高温熔融金属作业人员可靠性分析

Human reliability analysis of high-temperature molten metal operation based on fuzzy CREAM and Bayesian network.

作者信息

Wu Yaju, Xu Kaili, Wang Ruojun, Xu Xiaohu

机构信息

School of Resources and Civil Engineering, Northeastern University, Shenyang, PR China.

School of Safety Engineering, Shenyang Aerospace University, Shenyang, PR China.

出版信息

PLoS One. 2021 Aug 2;16(8):e0254861. doi: 10.1371/journal.pone.0254861. eCollection 2021.

Abstract

Human errors are considered to be the main causation factors of high-temperature molten metal accidents in metallurgical enterprises. The complex working environment of high- temperature molten metal in metallurgical enterprises has an important influence on the reliability of human behavior. A review of current human reliability techniques confirms that there is a lack of quantitative analysis of human errors in high-temperature molten metal operating environments. In this paper, a model was proposed to support the human reliability analysis of high-temperature molten metal operation in the metallurgy industry based on cognitive reliability and error analysis method (CREAM), fuzzy logic theory, and Bayesian network (BN). The comprehensive rules of common performance conditions in conventional CREAM approach were provided to evaluate various conditions for high-temperature molten metal operation in the metallurgy industry. This study adopted fuzzy CREAM to consider the uncertainties and used the BN to determine the control mode and calculate human error probability (HEP). The HEP for workers involved in high-temperature melting in steelmaking production process was calculated in a case with 13 operators being engaged in different high-temperature molten metal operations. The human error probability of two operators with different control modes was compared with the calculation result of basic CREAM, and the result showed that the method proposed in this paper is validated. This paper quantified point values of human error probability in high-temperature molten metal operation for the first time, which can be used as input in the risk evaluation of metallurgical industry.

摘要

人为失误被认为是冶金企业高温熔融金属事故的主要致因因素。冶金企业高温熔融金属复杂的工作环境对人类行为的可靠性有重要影响。对当前人类可靠性技术的回顾证实,在高温熔融金属作业环境中缺乏对人为失误的定量分析。本文基于认知可靠性与失误分析方法(CREAM)、模糊逻辑理论和贝叶斯网络(BN),提出了一个支持冶金行业高温熔融金属作业人类可靠性分析的模型。提供了传统CREAM方法中常见性能条件的综合规则,以评估冶金行业高温熔融金属作业的各种条件。本研究采用模糊CREAM来考虑不确定性,并使用贝叶斯网络来确定控制模式和计算人为失误概率(HEP)。在一个有13名操作人员从事不同高温熔融金属作业的案例中,计算了炼钢生产过程中参与高温熔炼的工人的HEP。将两种不同控制模式的操作人员的人为失误概率与基本CREAM的计算结果进行了比较,结果表明本文提出的方法是有效的。本文首次对高温熔融金属作业中人为失误概率的点值进行了量化,可作为冶金行业风险评估的输入。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db8f/8328327/f3f99c6e948d/pone.0254861.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验