Suppr超能文献

基于 SPAR-H 方法的贝叶斯网络在核电厂人因可靠性量化中的应用。

Application of a Bayesian network to quantify human reliability in nuclear power plants based on the SPAR-H method.

机构信息

College of Mechanical and Electrical Engineering, Harbin Engineering University, China.

Faculty of Mechatronics and Civil Engineering,Viet Nam National University of Forestry, Viet Nam.

出版信息

Int J Occup Saf Ergon. 2022 Dec;28(4):2588-2598. doi: 10.1080/10803548.2022.2026074. Epub 2022 Feb 6.

Abstract

Human error is an important factor leading to nuclear power plant (NPP) accidents. Human reliability analysis (HRA) is considered an effective method to reduce human error. Therefore, this article proposes a method to quantify human reliability based on the standardized plant analysis risk-human reliability analysis (SPAR-H) method. Firstly, the method used the performance shaping factors of SPAR-H to build a human reliability model. Secondly, the triangular fuzzy number was used to quantify the qualitative information of root nodes, and the fuzzy IF-THEN rule was used to determine the prior probability distribution of intermediate nodes. Finally, Bayesian reasoning was used to quantify human reliability based on the human reliability model. The result of the developed method is consistent with the result of cognitive reliability and error analysis methods (CREAM). The developed method can be used as a tool to quantify human reliability in the NPP system.

摘要

人为错误是导致核电站(NPP)事故的一个重要因素。人因可靠性分析(HRA)被认为是减少人为错误的有效方法。因此,本文提出了一种基于标准化电厂分析风险-人因可靠性分析(SPAR-H)方法的量化人因可靠性的方法。首先,该方法使用 SPAR-H 的性能塑造因素来构建人因可靠性模型。其次,使用三角模糊数对根节点的定性信息进行量化,并使用模糊 IF-THEN 规则确定中间节点的先验概率分布。最后,基于人因可靠性模型,使用贝叶斯推理来量化人因可靠性。所开发方法的结果与认知可靠性和失误分析方法(CREAM)的结果一致。所开发的方法可以作为一种工具,用于量化 NPP 系统中的人因可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验