Suppr超能文献

亚洲人急性ST段抬高型心肌梗死(STEMI)后的短期和长期死亡率预测:一种机器学习方法。

Short- and long-term mortality prediction after an acute ST-elevation myocardial infarction (STEMI) in Asians: A machine learning approach.

作者信息

Aziz Firdaus, Malek Sorayya, Ibrahim Khairul Shafiq, Raja Shariff Raja Ezman, Wan Ahmad Wan Azman, Ali Rosli Mohd, Liu Kien Ting, Selvaraj Gunavathy, Kasim Sazzli

机构信息

Bioinformatics Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.

Cardiology Department, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia.

出版信息

PLoS One. 2021 Aug 2;16(8):e0254894. doi: 10.1371/journal.pone.0254894. eCollection 2021.

Abstract

BACKGROUND

Conventional risk score for predicting short and long-term mortality following an ST-segment elevation myocardial infarction (STEMI) is often not population specific.

OBJECTIVE

Apply machine learning for the prediction and identification of factors associated with short and long-term mortality in Asian STEMI patients and compare with a conventional risk score.

METHODS

The National Cardiovascular Disease Database for Malaysia registry, of a multi-ethnic, heterogeneous Asian population was used for in-hospital (6299 patients), 30-days (3130 patients), and 1-year (2939 patients) model development. 50 variables were considered. Mortality prediction was analysed using feature selection methods with machine learning algorithms and compared to Thrombolysis in Myocardial Infarction (TIMI) score. Invasive management of varying degrees was selected as important variables that improved mortality prediction.

RESULTS

Model performance using a complete and reduced variable produced an area under the receiver operating characteristic curve (AUC) from 0.73 to 0.90. The best machine learning model for in-hospital, 30 days, and 1-year outperformed TIMI risk score (AUC = 0.88, 95% CI: 0.846-0.910; vs AUC = 0.81, 95% CI:0.772-0.845, AUC = 0.90, 95% CI: 0.870-0.935; vs AUC = 0.80, 95% CI: 0.746-0.838, AUC = 0.84, 95% CI: 0.798-0.872; vs AUC = 0.76, 95% CI: 0.715-0.802, p < 0.0001 for all). TIMI score underestimates patients' risk of mortality. 90% of non-survival patients are classified as high risk (>50%) by machine learning algorithm compared to 10-30% non-survival patients by TIMI. Common predictors identified for short- and long-term mortality were age, heart rate, Killip class, fasting blood glucose, prior primary PCI or pharmaco-invasive therapy and diuretics. The final algorithm was converted into an online tool with a database for continuous data archiving for algorithm validation.

CONCLUSIONS

In a multi-ethnic population, patients with STEMI were better classified using the machine learning method compared to TIMI scoring. Machine learning allows for the identification of distinct factors in individual Asian populations for better mortality prediction. Ongoing continuous testing and validation will allow for better risk stratification and potentially alter management and outcomes in the future.

摘要

背景

用于预测ST段抬高型心肌梗死(STEMI)后短期和长期死亡率的传统风险评分通常不具有人群特异性。

目的

应用机器学习预测和识别亚洲STEMI患者短期和长期死亡率的相关因素,并与传统风险评分进行比较。

方法

使用马来西亚国家心血管疾病数据库登记处的数据,该数据库涵盖多民族、异质的亚洲人群,用于开发住院(6299例患者)、30天(3130例患者)和1年(2939例患者)模型。考虑了50个变量。使用机器学习算法的特征选择方法分析死亡率预测,并与心肌梗死溶栓(TIMI)评分进行比较。选择不同程度的侵入性治疗作为改善死亡率预测的重要变量。

结果

使用完整和简化变量的模型性能产生的受试者操作特征曲线下面积(AUC)为0.73至0.90。住院、30天和1年的最佳机器学习模型优于TIMI风险评分(AUC = 0.88,95%CI:0.846 - 0.910;vs AUC = 0.81,95%CI:0.772 - 0.845,AUC = 0.90,95%CI:0.870 - 0.935;vs AUC = 0.80,95%CI:0.746 - 0.838,AUC = 0.84,95%CI:0.798 - 0.872;vs AUC = 0.76,95%CI:0.715 - 0.802,所有p < 0.0001)。TIMI评分低估了患者的死亡风险。机器学习算法将90%的非存活患者分类为高风险(>50%),而TIMI将10 - 30%的非存活患者分类为高风险。确定的短期和长期死亡率的常见预测因素为年龄、心率、Killip分级、空腹血糖、既往直接经皮冠状动脉介入治疗或药物介入治疗以及利尿剂。最终算法被转换为一个在线工具,并带有一个用于连续数据存档以进行算法验证的数据库。

结论

在多民族人群中,与TIMI评分相比,使用机器学习方法对STEMI患者进行分类效果更好。机器学习能够识别亚洲个体人群中的不同因素,以更好地预测死亡率。持续的连续测试和验证将有助于实现更好的风险分层,并可能在未来改变管理方式和改善预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb0/8328310/d2f4a69728eb/pone.0254894.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验