Suppr超能文献

亚洲老年住院患者的院内风险分层算法。

In-hospital risk stratification algorithm of Asian elderly patients.

机构信息

Cardiology Department, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia.

Cardiac Vascular and Lung Research Institute, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia.

出版信息

Sci Rep. 2022 Oct 20;12(1):17592. doi: 10.1038/s41598-022-18839-9.

Abstract

Limited research has been conducted in Asian elderly patients (aged 65 years and above) for in-hospital mortality prediction after an ST-segment elevation myocardial infarction (STEMI) using Deep Learning (DL) and Machine Learning (ML). We used DL and ML to predict in-hospital mortality in Asian elderly STEMI patients and compared it to a conventional risk score for myocardial infraction outcomes. Malaysia's National Cardiovascular Disease Registry comprises an ethnically diverse Asian elderly population (3991 patients). 50 variables helped in establishing the in-hospital death prediction model. The TIMI score was used to predict mortality using DL and feature selection methods from ML algorithms. The main performance metric was the area under the receiver operating characteristic curve (AUC). The DL and ML model constructed using ML feature selection outperforms the conventional risk scoring score, TIMI (AUC 0.75). DL built from ML features (AUC ranging from 0.93 to 0.95) outscored DL built from all features (AUC 0.93). The TIMI score underestimates mortality in the elderly. TIMI predicts 18.4% higher mortality than the DL algorithm (44.7%). All ML feature selection algorithms identify age, fasting blood glucose, heart rate, Killip class, oral hypoglycemic agent, systolic blood pressure, and total cholesterol as common predictors of mortality in the elderly. In a multi-ethnic population, DL outperformed the TIMI risk score in classifying elderly STEMI patients. ML improves death prediction by identifying separate characteristics in older Asian populations. Continuous testing and validation will improve future risk classification, management, and results.

摘要

针对亚洲老年患者(年龄 65 岁及以上)院内死亡率预测,深度学习(DL)和机器学习(ML)的相关研究有限。我们使用 DL 和 ML 预测亚洲老年 ST 段抬高型心肌梗死(STEMI)患者的院内死亡率,并将其与传统的心肌梗死预后风险评分进行比较。马来西亚国家心血管疾病注册中心包含了一个种族多样化的亚洲老年人群体(3991 例患者)。50 个变量有助于建立院内死亡预测模型。使用 TIMI 评分和来自 ML 算法的特征选择方法来预测死亡率。主要性能指标是接收者操作特征曲线下的面积(AUC)。使用 ML 特征选择构建的 DL 和 ML 模型优于传统风险评分、TIMI(AUC 为 0.75)。从 ML 特征构建的 DL(AUC 在 0.93 到 0.95 之间)的表现优于从所有特征构建的 DL(AUC 为 0.93)。TIMI 评分低估了老年人的死亡率。TIMI 预测的死亡率比 DL 算法高 18.4%(44.7%)。所有 ML 特征选择算法都确定了年龄、空腹血糖、心率、Killip 分级、口服降糖药、收缩压和总胆固醇是老年人死亡率的共同预测因素。在多民族人群中,DL 在分类老年 STEMI 患者方面优于 TIMI 风险评分。ML 通过识别亚洲老年人群体的不同特征来提高死亡预测能力。持续的测试和验证将改善未来的风险分类、管理和结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bbe/9584943/5f071ad2cf74/41598_2022_18839_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验